Aromātai
24+20i
Wāhi Tūturu
24
Tohaina
Kua tāruatia ki te papatopenga
\left(3i+i\right)\left(5-6i\right)
Tātaitia te pūtakerua o -9 kia tae ki 3i.
4i\left(5-6i\right)
Tāpirihia te 3i ki te i, ka 4i.
4i\times 5+4\left(-6\right)i^{2}
Whakareatia 4i ki te 5-6i.
4i\times 5+4\left(-6\right)\left(-1\right)
Hei tōna tikanga, ko te i^{2} ko -1.
24+20i
Mahia ngā whakarea. Whakaraupapatia anō ngā kīanga tau.
Re(\left(3i+i\right)\left(5-6i\right))
Tātaitia te pūtakerua o -9 kia tae ki 3i.
Re(4i\left(5-6i\right))
Tāpirihia te 3i ki te i, ka 4i.
Re(4i\times 5+4\left(-6\right)i^{2})
Whakareatia 4i ki te 5-6i.
Re(4i\times 5+4\left(-6\right)\left(-1\right))
Hei tōna tikanga, ko te i^{2} ko -1.
Re(24+20i)
Mahia ngā whakarea i roto o 4i\times 5+4\left(-6\right)\left(-1\right). Whakaraupapatia anō ngā kīanga tau.
24
Ko te wāhi tūturu o 24+20i ko 24.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}