Aromātai
\left(2-x\right)^{2}+25
Kimi Pārōnaki e ai ki x
2\left(x-2\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{4-4x+x^{2}+25}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2-x\right)^{2}.
\left(\sqrt{29-4x+x^{2}}\right)^{2}
Tāpirihia te 4 ki te 25, ka 29.
29-4x+x^{2}
Tātaihia te \sqrt{29-4x+x^{2}} mā te pū o 2, kia riro ko 29-4x+x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(\sqrt{4-4x+x^{2}+25}\right)^{2})
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2-x\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(\sqrt{29-4x+x^{2}}\right)^{2})
Tāpirihia te 4 ki te 25, ka 29.
\frac{\mathrm{d}}{\mathrm{d}x}(29-4x+x^{2})
Tātaihia te \sqrt{29-4x+x^{2}} mā te pū o 2, kia riro ko 29-4x+x^{2}.
-4x^{1-1}+2x^{2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-4x^{0}+2x^{2-1}
Tango 1 mai i 1.
-4x^{0}+2x^{1}
Tango 1 mai i 2.
-4x^{0}+2x
Mō tētahi kupu t, t^{1}=t.
-4+2x
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}