Aromātai
-63
Tauwehe
-63
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{3}-\left(\frac{\left(\frac{1}{3}\right)^{2}}{\left(\frac{1}{2}\right)^{2}}\times 15-\left(0\times 5+\frac{2\times 3+2}{3}\right)+0\times 5\right)^{3}+\frac{2}{3}
Tuhia anō te pūtake rua o te whakawehenga \frac{1}{9} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{9}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{1}{3}-\left(\frac{\frac{1}{9}}{\left(\frac{1}{2}\right)^{2}}\times 15-\left(0\times 5+\frac{2\times 3+2}{3}\right)+0\times 5\right)^{3}+\frac{2}{3}
Tātaihia te \frac{1}{3} mā te pū o 2, kia riro ko \frac{1}{9}.
\frac{1}{3}-\left(\frac{\frac{1}{9}}{\frac{1}{4}}\times 15-\left(0\times 5+\frac{2\times 3+2}{3}\right)+0\times 5\right)^{3}+\frac{2}{3}
Tātaihia te \frac{1}{2} mā te pū o 2, kia riro ko \frac{1}{4}.
\frac{1}{3}-\left(\frac{1}{9}\times 4\times 15-\left(0\times 5+\frac{2\times 3+2}{3}\right)+0\times 5\right)^{3}+\frac{2}{3}
Whakawehe \frac{1}{9} ki te \frac{1}{4} mā te whakarea \frac{1}{9} ki te tau huripoki o \frac{1}{4}.
\frac{1}{3}-\left(\frac{4}{9}\times 15-\left(0\times 5+\frac{2\times 3+2}{3}\right)+0\times 5\right)^{3}+\frac{2}{3}
Whakareatia te \frac{1}{9} ki te 4, ka \frac{4}{9}.
\frac{1}{3}-\left(\frac{20}{3}-\left(0\times 5+\frac{2\times 3+2}{3}\right)+0\times 5\right)^{3}+\frac{2}{3}
Whakareatia te \frac{4}{9} ki te 15, ka \frac{20}{3}.
\frac{1}{3}-\left(\frac{20}{3}-\left(0+\frac{2\times 3+2}{3}\right)+0\times 5\right)^{3}+\frac{2}{3}
Whakareatia te 0 ki te 5, ka 0.
\frac{1}{3}-\left(\frac{20}{3}-\left(0+\frac{6+2}{3}\right)+0\times 5\right)^{3}+\frac{2}{3}
Whakareatia te 2 ki te 3, ka 6.
\frac{1}{3}-\left(\frac{20}{3}-\left(0+\frac{8}{3}\right)+0\times 5\right)^{3}+\frac{2}{3}
Tāpirihia te 6 ki te 2, ka 8.
\frac{1}{3}-\left(\frac{20}{3}-\frac{8}{3}+0\times 5\right)^{3}+\frac{2}{3}
Tāpirihia te 0 ki te \frac{8}{3}, ka \frac{8}{3}.
\frac{1}{3}-\left(4+0\times 5\right)^{3}+\frac{2}{3}
Tangohia te \frac{8}{3} i te \frac{20}{3}, ka 4.
\frac{1}{3}-\left(4+0\right)^{3}+\frac{2}{3}
Whakareatia te 0 ki te 5, ka 0.
\frac{1}{3}-4^{3}+\frac{2}{3}
Tāpirihia te 4 ki te 0, ka 4.
\frac{1}{3}-64+\frac{2}{3}
Tātaihia te 4 mā te pū o 3, kia riro ko 64.
-\frac{191}{3}+\frac{2}{3}
Tangohia te 64 i te \frac{1}{3}, ka -\frac{191}{3}.
-63
Tāpirihia te -\frac{191}{3} ki te \frac{2}{3}, ka -63.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}