Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\frac{1}{2}+\cos(\frac{\pi }{3})\right)^{2}+\left(\sin(\frac{\pi }{3})+\cos(\frac{\pi }{6})\right)^{2}
Tīkina te uara \sin(\frac{\pi }{6}) mai i te ripanga uara pākoki.
\left(\frac{1}{2}+\frac{1}{2}\right)^{2}+\left(\sin(\frac{\pi }{3})+\cos(\frac{\pi }{6})\right)^{2}
Tīkina te uara \cos(\frac{\pi }{3}) mai i te ripanga uara pākoki.
1^{2}+\left(\sin(\frac{\pi }{3})+\cos(\frac{\pi }{6})\right)^{2}
Tāpirihia te \frac{1}{2} ki te \frac{1}{2}, ka 1.
1+\left(\sin(\frac{\pi }{3})+\cos(\frac{\pi }{6})\right)^{2}
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
1+\left(\frac{\sqrt{3}}{2}+\cos(\frac{\pi }{6})\right)^{2}
Tīkina te uara \sin(\frac{\pi }{3}) mai i te ripanga uara pākoki.
1+\left(\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}\right)^{2}
Tīkina te uara \cos(\frac{\pi }{6}) mai i te ripanga uara pākoki.
1+\left(\sqrt{3}\right)^{2}
Pahekotia te \frac{\sqrt{3}}{2} me \frac{\sqrt{3}}{2}, ka \sqrt{3}.
1+3
Ko te pūrua o \sqrt{3} ko 3.
4
Tāpirihia te 1 ki te 3, ka 4.