Aromātai
7ϕ
Whakaroha
7ϕ
Tohaina
Kua tāruatia ki te papatopenga
\frac{ϕ\times \frac{4+1}{4}\times 7}{\frac{12\times 12+7}{12}-\frac{11\times 3+1}{3}}
Whakareatia te 1 ki te 4, ka 4.
\frac{ϕ\times \frac{5}{4}\times 7}{\frac{12\times 12+7}{12}-\frac{11\times 3+1}{3}}
Tāpirihia te 4 ki te 1, ka 5.
\frac{ϕ\times \frac{5\times 7}{4}}{\frac{12\times 12+7}{12}-\frac{11\times 3+1}{3}}
Tuhia te \frac{5}{4}\times 7 hei hautanga kotahi.
\frac{ϕ\times \frac{35}{4}}{\frac{12\times 12+7}{12}-\frac{11\times 3+1}{3}}
Whakareatia te 5 ki te 7, ka 35.
\frac{ϕ\times \frac{35}{4}}{\frac{144+7}{12}-\frac{11\times 3+1}{3}}
Whakareatia te 12 ki te 12, ka 144.
\frac{ϕ\times \frac{35}{4}}{\frac{151}{12}-\frac{11\times 3+1}{3}}
Tāpirihia te 144 ki te 7, ka 151.
\frac{ϕ\times \frac{35}{4}}{\frac{151}{12}-\frac{33+1}{3}}
Whakareatia te 11 ki te 3, ka 33.
\frac{ϕ\times \frac{35}{4}}{\frac{151}{12}-\frac{34}{3}}
Tāpirihia te 33 ki te 1, ka 34.
\frac{ϕ\times \frac{35}{4}}{\frac{151}{12}-\frac{136}{12}}
Ko te maha noa iti rawa atu o 12 me 3 ko 12. Me tahuri \frac{151}{12} me \frac{34}{3} ki te hautau me te tautūnga 12.
\frac{ϕ\times \frac{35}{4}}{\frac{151-136}{12}}
Tā te mea he rite te tauraro o \frac{151}{12} me \frac{136}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{ϕ\times \frac{35}{4}}{\frac{15}{12}}
Tangohia te 136 i te 151, ka 15.
\frac{ϕ\times \frac{35}{4}}{\frac{5}{4}}
Whakahekea te hautanga \frac{15}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{ϕ\times \frac{35}{4}\times 4}{5}
Whakawehe ϕ\times \frac{35}{4} ki te \frac{5}{4} mā te whakarea ϕ\times \frac{35}{4} ki te tau huripoki o \frac{5}{4}.
\frac{ϕ\times 35}{5}
Me whakakore te 4 me te 4.
ϕ\times 7
Whakawehea te ϕ\times 35 ki te 5, kia riro ko ϕ\times 7.
\frac{ϕ\times \frac{4+1}{4}\times 7}{\frac{12\times 12+7}{12}-\frac{11\times 3+1}{3}}
Whakareatia te 1 ki te 4, ka 4.
\frac{ϕ\times \frac{5}{4}\times 7}{\frac{12\times 12+7}{12}-\frac{11\times 3+1}{3}}
Tāpirihia te 4 ki te 1, ka 5.
\frac{ϕ\times \frac{5\times 7}{4}}{\frac{12\times 12+7}{12}-\frac{11\times 3+1}{3}}
Tuhia te \frac{5}{4}\times 7 hei hautanga kotahi.
\frac{ϕ\times \frac{35}{4}}{\frac{12\times 12+7}{12}-\frac{11\times 3+1}{3}}
Whakareatia te 5 ki te 7, ka 35.
\frac{ϕ\times \frac{35}{4}}{\frac{144+7}{12}-\frac{11\times 3+1}{3}}
Whakareatia te 12 ki te 12, ka 144.
\frac{ϕ\times \frac{35}{4}}{\frac{151}{12}-\frac{11\times 3+1}{3}}
Tāpirihia te 144 ki te 7, ka 151.
\frac{ϕ\times \frac{35}{4}}{\frac{151}{12}-\frac{33+1}{3}}
Whakareatia te 11 ki te 3, ka 33.
\frac{ϕ\times \frac{35}{4}}{\frac{151}{12}-\frac{34}{3}}
Tāpirihia te 33 ki te 1, ka 34.
\frac{ϕ\times \frac{35}{4}}{\frac{151}{12}-\frac{136}{12}}
Ko te maha noa iti rawa atu o 12 me 3 ko 12. Me tahuri \frac{151}{12} me \frac{34}{3} ki te hautau me te tautūnga 12.
\frac{ϕ\times \frac{35}{4}}{\frac{151-136}{12}}
Tā te mea he rite te tauraro o \frac{151}{12} me \frac{136}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{ϕ\times \frac{35}{4}}{\frac{15}{12}}
Tangohia te 136 i te 151, ka 15.
\frac{ϕ\times \frac{35}{4}}{\frac{5}{4}}
Whakahekea te hautanga \frac{15}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{ϕ\times \frac{35}{4}\times 4}{5}
Whakawehe ϕ\times \frac{35}{4} ki te \frac{5}{4} mā te whakarea ϕ\times \frac{35}{4} ki te tau huripoki o \frac{5}{4}.
\frac{ϕ\times 35}{5}
Me whakakore te 4 me te 4.
ϕ\times 7
Whakawehea te ϕ\times 35 ki te 5, kia riro ko ϕ\times 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}