( \left( 268-200 \left( 1-x \right) \right) 115 \geq 9200
Whakaoti mō x
x\geq \frac{3}{50}
Graph
Tohaina
Kua tāruatia ki te papatopenga
268-200\left(1-x\right)\geq \frac{9200}{115}
Whakawehea ngā taha e rua ki te 115. I te mea he tōrunga te 115, kāore e huri te ahunga koreōrite.
268-200\left(1-x\right)\geq 80
Whakawehea te 9200 ki te 115, kia riro ko 80.
268-200+200x\geq 80
Whakamahia te āhuatanga tohatoha hei whakarea te -200 ki te 1-x.
68+200x\geq 80
Tangohia te 200 i te 268, ka 68.
200x\geq 80-68
Tangohia te 68 mai i ngā taha e rua.
200x\geq 12
Tangohia te 68 i te 80, ka 12.
x\geq \frac{12}{200}
Whakawehea ngā taha e rua ki te 200. I te mea he tōrunga te 200, kāore e huri te ahunga koreōrite.
x\geq \frac{3}{50}
Whakahekea te hautanga \frac{12}{200} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}