Aromātai
-5x
Whakaroha
-5x
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{x+5-6x}{x\left(x-1\right)}}{\frac{1}{x^{2}}}
Tā te mea he rite te tauraro o \frac{x+5}{x\left(x-1\right)} me \frac{6x}{x\left(x-1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{-5x+5}{x\left(x-1\right)}}{\frac{1}{x^{2}}}
Whakakotahitia ngā kupu rite i x+5-6x.
\frac{\frac{5\left(-x+1\right)}{x\left(x-1\right)}}{\frac{1}{x^{2}}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{-5x+5}{x\left(x-1\right)}.
\frac{\frac{-5\left(x-1\right)}{x\left(x-1\right)}}{\frac{1}{x^{2}}}
Unuhia te tohu tōraro i roto o 1-x.
\frac{\frac{-5}{x}}{\frac{1}{x^{2}}}
Me whakakore tahi te x-1 i te taurunga me te tauraro.
\frac{-5x^{2}}{x}
Whakawehe \frac{-5}{x} ki te \frac{1}{x^{2}} mā te whakarea \frac{-5}{x} ki te tau huripoki o \frac{1}{x^{2}}.
-5x
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{\frac{x+5-6x}{x\left(x-1\right)}}{\frac{1}{x^{2}}}
Tā te mea he rite te tauraro o \frac{x+5}{x\left(x-1\right)} me \frac{6x}{x\left(x-1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{-5x+5}{x\left(x-1\right)}}{\frac{1}{x^{2}}}
Whakakotahitia ngā kupu rite i x+5-6x.
\frac{\frac{5\left(-x+1\right)}{x\left(x-1\right)}}{\frac{1}{x^{2}}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{-5x+5}{x\left(x-1\right)}.
\frac{\frac{-5\left(x-1\right)}{x\left(x-1\right)}}{\frac{1}{x^{2}}}
Unuhia te tohu tōraro i roto o 1-x.
\frac{\frac{-5}{x}}{\frac{1}{x^{2}}}
Me whakakore tahi te x-1 i te taurunga me te tauraro.
\frac{-5x^{2}}{x}
Whakawehe \frac{-5}{x} ki te \frac{1}{x^{2}} mā te whakarea \frac{-5}{x} ki te tau huripoki o \frac{1}{x^{2}}.
-5x
Me whakakore tahi te x i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}