Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\frac{x\left(y-1\right)}{\left(y-1\right)\left(y+1\right)}-\frac{x\left(y+1\right)}{\left(y-1\right)\left(y+1\right)}\right)\times \frac{x+xy^{2}}{3x^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o y+1 me y-1 ko \left(y-1\right)\left(y+1\right). Whakareatia \frac{x}{y+1} ki te \frac{y-1}{y-1}. Whakareatia \frac{x}{y-1} ki te \frac{y+1}{y+1}.
\frac{x\left(y-1\right)-x\left(y+1\right)}{\left(y-1\right)\left(y+1\right)}\times \frac{x+xy^{2}}{3x^{2}}
Tā te mea he rite te tauraro o \frac{x\left(y-1\right)}{\left(y-1\right)\left(y+1\right)} me \frac{x\left(y+1\right)}{\left(y-1\right)\left(y+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{xy-x-xy-x}{\left(y-1\right)\left(y+1\right)}\times \frac{x+xy^{2}}{3x^{2}}
Mahia ngā whakarea i roto o x\left(y-1\right)-x\left(y+1\right).
\frac{-2x}{\left(y-1\right)\left(y+1\right)}\times \frac{x+xy^{2}}{3x^{2}}
Whakakotahitia ngā kupu rite i xy-x-xy-x.
\frac{-2x}{\left(y-1\right)\left(y+1\right)}\times \frac{x\left(y^{2}+1\right)}{3x^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x+xy^{2}}{3x^{2}}.
\frac{-2x}{\left(y-1\right)\left(y+1\right)}\times \frac{y^{2}+1}{3x}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{-2x\left(y^{2}+1\right)}{\left(y-1\right)\left(y+1\right)\times 3x}
Me whakarea te \frac{-2x}{\left(y-1\right)\left(y+1\right)} ki te \frac{y^{2}+1}{3x} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-2\left(y^{2}+1\right)}{3\left(y-1\right)\left(y+1\right)}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{-2y^{2}-2}{3\left(y-1\right)\left(y+1\right)}
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te y^{2}+1.
\frac{-2y^{2}-2}{\left(3y-3\right)\left(y+1\right)}
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te y-1.
\frac{-2y^{2}-2}{3y^{2}-3}
Whakamahia te āhuatanga tuaritanga hei whakarea te 3y-3 ki te y+1 ka whakakotahi i ngā kupu rite.
\left(\frac{x\left(y-1\right)}{\left(y-1\right)\left(y+1\right)}-\frac{x\left(y+1\right)}{\left(y-1\right)\left(y+1\right)}\right)\times \frac{x+xy^{2}}{3x^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o y+1 me y-1 ko \left(y-1\right)\left(y+1\right). Whakareatia \frac{x}{y+1} ki te \frac{y-1}{y-1}. Whakareatia \frac{x}{y-1} ki te \frac{y+1}{y+1}.
\frac{x\left(y-1\right)-x\left(y+1\right)}{\left(y-1\right)\left(y+1\right)}\times \frac{x+xy^{2}}{3x^{2}}
Tā te mea he rite te tauraro o \frac{x\left(y-1\right)}{\left(y-1\right)\left(y+1\right)} me \frac{x\left(y+1\right)}{\left(y-1\right)\left(y+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{xy-x-xy-x}{\left(y-1\right)\left(y+1\right)}\times \frac{x+xy^{2}}{3x^{2}}
Mahia ngā whakarea i roto o x\left(y-1\right)-x\left(y+1\right).
\frac{-2x}{\left(y-1\right)\left(y+1\right)}\times \frac{x+xy^{2}}{3x^{2}}
Whakakotahitia ngā kupu rite i xy-x-xy-x.
\frac{-2x}{\left(y-1\right)\left(y+1\right)}\times \frac{x\left(y^{2}+1\right)}{3x^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x+xy^{2}}{3x^{2}}.
\frac{-2x}{\left(y-1\right)\left(y+1\right)}\times \frac{y^{2}+1}{3x}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{-2x\left(y^{2}+1\right)}{\left(y-1\right)\left(y+1\right)\times 3x}
Me whakarea te \frac{-2x}{\left(y-1\right)\left(y+1\right)} ki te \frac{y^{2}+1}{3x} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-2\left(y^{2}+1\right)}{3\left(y-1\right)\left(y+1\right)}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{-2y^{2}-2}{3\left(y-1\right)\left(y+1\right)}
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te y^{2}+1.
\frac{-2y^{2}-2}{\left(3y-3\right)\left(y+1\right)}
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te y-1.
\frac{-2y^{2}-2}{3y^{2}-3}
Whakamahia te āhuatanga tuaritanga hei whakarea te 3y-3 ki te y+1 ka whakakotahi i ngā kupu rite.