Aromātai
-\frac{2\left(y^{2}+1\right)}{3\left(y^{2}-1\right)}
Whakaroha
-\frac{2\left(y^{2}+1\right)}{3\left(y^{2}-1\right)}
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{x\left(y-1\right)}{\left(y-1\right)\left(y+1\right)}-\frac{x\left(y+1\right)}{\left(y-1\right)\left(y+1\right)}\right)\times \frac{x+xy^{2}}{3x^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o y+1 me y-1 ko \left(y-1\right)\left(y+1\right). Whakareatia \frac{x}{y+1} ki te \frac{y-1}{y-1}. Whakareatia \frac{x}{y-1} ki te \frac{y+1}{y+1}.
\frac{x\left(y-1\right)-x\left(y+1\right)}{\left(y-1\right)\left(y+1\right)}\times \frac{x+xy^{2}}{3x^{2}}
Tā te mea he rite te tauraro o \frac{x\left(y-1\right)}{\left(y-1\right)\left(y+1\right)} me \frac{x\left(y+1\right)}{\left(y-1\right)\left(y+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{xy-x-xy-x}{\left(y-1\right)\left(y+1\right)}\times \frac{x+xy^{2}}{3x^{2}}
Mahia ngā whakarea i roto o x\left(y-1\right)-x\left(y+1\right).
\frac{-2x}{\left(y-1\right)\left(y+1\right)}\times \frac{x+xy^{2}}{3x^{2}}
Whakakotahitia ngā kupu rite i xy-x-xy-x.
\frac{-2x}{\left(y-1\right)\left(y+1\right)}\times \frac{x\left(y^{2}+1\right)}{3x^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x+xy^{2}}{3x^{2}}.
\frac{-2x}{\left(y-1\right)\left(y+1\right)}\times \frac{y^{2}+1}{3x}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{-2x\left(y^{2}+1\right)}{\left(y-1\right)\left(y+1\right)\times 3x}
Me whakarea te \frac{-2x}{\left(y-1\right)\left(y+1\right)} ki te \frac{y^{2}+1}{3x} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-2\left(y^{2}+1\right)}{3\left(y-1\right)\left(y+1\right)}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{-2y^{2}-2}{3\left(y-1\right)\left(y+1\right)}
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te y^{2}+1.
\frac{-2y^{2}-2}{\left(3y-3\right)\left(y+1\right)}
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te y-1.
\frac{-2y^{2}-2}{3y^{2}-3}
Whakamahia te āhuatanga tuaritanga hei whakarea te 3y-3 ki te y+1 ka whakakotahi i ngā kupu rite.
\left(\frac{x\left(y-1\right)}{\left(y-1\right)\left(y+1\right)}-\frac{x\left(y+1\right)}{\left(y-1\right)\left(y+1\right)}\right)\times \frac{x+xy^{2}}{3x^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o y+1 me y-1 ko \left(y-1\right)\left(y+1\right). Whakareatia \frac{x}{y+1} ki te \frac{y-1}{y-1}. Whakareatia \frac{x}{y-1} ki te \frac{y+1}{y+1}.
\frac{x\left(y-1\right)-x\left(y+1\right)}{\left(y-1\right)\left(y+1\right)}\times \frac{x+xy^{2}}{3x^{2}}
Tā te mea he rite te tauraro o \frac{x\left(y-1\right)}{\left(y-1\right)\left(y+1\right)} me \frac{x\left(y+1\right)}{\left(y-1\right)\left(y+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{xy-x-xy-x}{\left(y-1\right)\left(y+1\right)}\times \frac{x+xy^{2}}{3x^{2}}
Mahia ngā whakarea i roto o x\left(y-1\right)-x\left(y+1\right).
\frac{-2x}{\left(y-1\right)\left(y+1\right)}\times \frac{x+xy^{2}}{3x^{2}}
Whakakotahitia ngā kupu rite i xy-x-xy-x.
\frac{-2x}{\left(y-1\right)\left(y+1\right)}\times \frac{x\left(y^{2}+1\right)}{3x^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x+xy^{2}}{3x^{2}}.
\frac{-2x}{\left(y-1\right)\left(y+1\right)}\times \frac{y^{2}+1}{3x}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{-2x\left(y^{2}+1\right)}{\left(y-1\right)\left(y+1\right)\times 3x}
Me whakarea te \frac{-2x}{\left(y-1\right)\left(y+1\right)} ki te \frac{y^{2}+1}{3x} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-2\left(y^{2}+1\right)}{3\left(y-1\right)\left(y+1\right)}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{-2y^{2}-2}{3\left(y-1\right)\left(y+1\right)}
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te y^{2}+1.
\frac{-2y^{2}-2}{\left(3y-3\right)\left(y+1\right)}
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te y-1.
\frac{-2y^{2}-2}{3y^{2}-3}
Whakamahia te āhuatanga tuaritanga hei whakarea te 3y-3 ki te y+1 ka whakakotahi i ngā kupu rite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}