Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\frac{1}{3}-\frac{3n}{n}\right)\times \frac{3n}{n-3n}
Me whakakore tahi te n i te taurunga me te tauraro.
\left(\frac{1}{3}-3\right)\times \frac{3n}{n-3n}
Me whakakore tahi te n i te taurunga me te tauraro.
\left(\frac{1}{3}-\frac{9}{3}\right)\times \frac{3n}{n-3n}
Me tahuri te 3 ki te hautau \frac{9}{3}.
\frac{1-9}{3}\times \frac{3n}{n-3n}
Tā te mea he rite te tauraro o \frac{1}{3} me \frac{9}{3}, me tango rāua mā te tango i ō raua taurunga.
-\frac{8}{3}\times \frac{3n}{n-3n}
Tangohia te 9 i te 1, ka -8.
-\frac{8}{3}\times \frac{3n}{-2n}
Pahekotia te n me -3n, ka -2n.
-\frac{8}{3}\times \frac{3}{-2}
Me whakakore tahi te n i te taurunga me te tauraro.
-\frac{8}{3}\left(-\frac{3}{2}\right)
Ka taea te hautanga \frac{3}{-2} te tuhi anō ko -\frac{3}{2} mā te tango i te tohu tōraro.
\frac{-8\left(-3\right)}{3\times 2}
Me whakarea te -\frac{8}{3} ki te -\frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{24}{6}
Mahia ngā whakarea i roto i te hautanga \frac{-8\left(-3\right)}{3\times 2}.
4
Whakawehea te 24 ki te 6, kia riro ko 4.