Aromātai
4
Tauwehe
2^{2}
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
( \frac{ n }{ 3n } - \frac{ 3n }{ n } ) \frac{ 3n }{ n-3n }
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{1}{3}-\frac{3n}{n}\right)\times \frac{3n}{n-3n}
Me whakakore tahi te n i te taurunga me te tauraro.
\left(\frac{1}{3}-3\right)\times \frac{3n}{n-3n}
Me whakakore tahi te n i te taurunga me te tauraro.
\left(\frac{1}{3}-\frac{9}{3}\right)\times \frac{3n}{n-3n}
Me tahuri te 3 ki te hautau \frac{9}{3}.
\frac{1-9}{3}\times \frac{3n}{n-3n}
Tā te mea he rite te tauraro o \frac{1}{3} me \frac{9}{3}, me tango rāua mā te tango i ō raua taurunga.
-\frac{8}{3}\times \frac{3n}{n-3n}
Tangohia te 9 i te 1, ka -8.
-\frac{8}{3}\times \frac{3n}{-2n}
Pahekotia te n me -3n, ka -2n.
-\frac{8}{3}\times \frac{3}{-2}
Me whakakore tahi te n i te taurunga me te tauraro.
-\frac{8}{3}\left(-\frac{3}{2}\right)
Ka taea te hautanga \frac{3}{-2} te tuhi anō ko -\frac{3}{2} mā te tango i te tohu tōraro.
\frac{-8\left(-3\right)}{3\times 2}
Me whakarea te -\frac{8}{3} ki te -\frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{24}{6}
Mahia ngā whakarea i roto i te hautanga \frac{-8\left(-3\right)}{3\times 2}.
4
Whakawehea te 24 ki te 6, kia riro ko 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}