Aromātai
6560
Tauwehe
2^{5}\times 5\times 41
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{4+4}{7}+\frac{3}{7}+\frac{3}{7}+\frac{1}{7}+\frac{5}{7}+\frac{8}{7}\right)\times 41\times 40
Tā te mea he rite te tauraro o \frac{4}{7} me \frac{4}{7}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\left(\frac{8}{7}+\frac{3}{7}+\frac{3}{7}+\frac{1}{7}+\frac{5}{7}+\frac{8}{7}\right)\times 41\times 40
Tāpirihia te 4 ki te 4, ka 8.
\left(\frac{8+3}{7}+\frac{3}{7}+\frac{1}{7}+\frac{5}{7}+\frac{8}{7}\right)\times 41\times 40
Tā te mea he rite te tauraro o \frac{8}{7} me \frac{3}{7}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\left(\frac{11}{7}+\frac{3}{7}+\frac{1}{7}+\frac{5}{7}+\frac{8}{7}\right)\times 41\times 40
Tāpirihia te 8 ki te 3, ka 11.
\left(\frac{11+3}{7}+\frac{1}{7}+\frac{5}{7}+\frac{8}{7}\right)\times 41\times 40
Tā te mea he rite te tauraro o \frac{11}{7} me \frac{3}{7}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\left(\frac{14}{7}+\frac{1}{7}+\frac{5}{7}+\frac{8}{7}\right)\times 41\times 40
Tāpirihia te 11 ki te 3, ka 14.
\left(\frac{14+1}{7}+\frac{5}{7}+\frac{8}{7}\right)\times 41\times 40
Tā te mea he rite te tauraro o \frac{14}{7} me \frac{1}{7}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\left(\frac{15}{7}+\frac{5}{7}+\frac{8}{7}\right)\times 41\times 40
Tāpirihia te 14 ki te 1, ka 15.
\left(\frac{15+5}{7}+\frac{8}{7}\right)\times 41\times 40
Tā te mea he rite te tauraro o \frac{15}{7} me \frac{5}{7}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\left(\frac{20}{7}+\frac{8}{7}\right)\times 41\times 40
Tāpirihia te 15 ki te 5, ka 20.
\frac{20+8}{7}\times 41\times 40
Tā te mea he rite te tauraro o \frac{20}{7} me \frac{8}{7}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{28}{7}\times 41\times 40
Tāpirihia te 20 ki te 8, ka 28.
4\times 41\times 40
Whakawehea te 28 ki te 7, kia riro ko 4.
164\times 40
Whakareatia te 4 ki te 41, ka 164.
6560
Whakareatia te 164 ki te 40, ka 6560.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}