Aromātai
1
Tauwehe
1
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{4}{5}-\frac{8\times 3}{15\left(2\times 3+2\right)}\right)\times \frac{1\times 3+2}{3}
Whakawehe \frac{8}{15} ki te \frac{2\times 3+2}{3} mā te whakarea \frac{8}{15} ki te tau huripoki o \frac{2\times 3+2}{3}.
\left(\frac{4}{5}-\frac{8}{5\left(2+2\times 3\right)}\right)\times \frac{1\times 3+2}{3}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\left(\frac{4}{5}-\frac{8}{5\left(2+6\right)}\right)\times \frac{1\times 3+2}{3}
Whakareatia te 2 ki te 3, ka 6.
\left(\frac{4}{5}-\frac{8}{5\times 8}\right)\times \frac{1\times 3+2}{3}
Tāpirihia te 2 ki te 6, ka 8.
\left(\frac{4}{5}-\frac{8}{40}\right)\times \frac{1\times 3+2}{3}
Whakareatia te 5 ki te 8, ka 40.
\left(\frac{4}{5}-\frac{1}{5}\right)\times \frac{1\times 3+2}{3}
Whakahekea te hautanga \frac{8}{40} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
\frac{4-1}{5}\times \frac{1\times 3+2}{3}
Tā te mea he rite te tauraro o \frac{4}{5} me \frac{1}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{3}{5}\times \frac{1\times 3+2}{3}
Tangohia te 1 i te 4, ka 3.
\frac{3}{5}\times \frac{3+2}{3}
Whakareatia te 1 ki te 3, ka 3.
\frac{3}{5}\times \frac{5}{3}
Tāpirihia te 3 ki te 2, ka 5.
1
Me whakakore atu te \frac{3}{5} me tōna tau utu \frac{5}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}