Aromātai
\frac{119}{180}\approx 0.661111111
Tauwehe
\frac{7 \cdot 17}{2 ^ {2} \cdot 3 ^ {2} \cdot 5} = 0.6611111111111111
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{20}{15}-\frac{3}{15}\right)\left(\frac{3}{4}-\frac{1}{6}\right)
Ko te maha noa iti rawa atu o 3 me 5 ko 15. Me tahuri \frac{4}{3} me \frac{1}{5} ki te hautau me te tautūnga 15.
\frac{20-3}{15}\left(\frac{3}{4}-\frac{1}{6}\right)
Tā te mea he rite te tauraro o \frac{20}{15} me \frac{3}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{17}{15}\left(\frac{3}{4}-\frac{1}{6}\right)
Tangohia te 3 i te 20, ka 17.
\frac{17}{15}\left(\frac{9}{12}-\frac{2}{12}\right)
Ko te maha noa iti rawa atu o 4 me 6 ko 12. Me tahuri \frac{3}{4} me \frac{1}{6} ki te hautau me te tautūnga 12.
\frac{17}{15}\times \frac{9-2}{12}
Tā te mea he rite te tauraro o \frac{9}{12} me \frac{2}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{17}{15}\times \frac{7}{12}
Tangohia te 2 i te 9, ka 7.
\frac{17\times 7}{15\times 12}
Me whakarea te \frac{17}{15} ki te \frac{7}{12} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{119}{180}
Mahia ngā whakarea i roto i te hautanga \frac{17\times 7}{15\times 12}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}