Aromātai
-\frac{7}{150}\approx -0.046666667
Tauwehe
-\frac{7}{150} = -0.04666666666666667
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{15}{20}-\frac{16}{20}\right)\left(\frac{1}{3}+\frac{3}{5}\right)
Ko te maha noa iti rawa atu o 4 me 5 ko 20. Me tahuri \frac{3}{4} me \frac{4}{5} ki te hautau me te tautūnga 20.
\frac{15-16}{20}\left(\frac{1}{3}+\frac{3}{5}\right)
Tā te mea he rite te tauraro o \frac{15}{20} me \frac{16}{20}, me tango rāua mā te tango i ō raua taurunga.
-\frac{1}{20}\left(\frac{1}{3}+\frac{3}{5}\right)
Tangohia te 16 i te 15, ka -1.
-\frac{1}{20}\left(\frac{5}{15}+\frac{9}{15}\right)
Ko te maha noa iti rawa atu o 3 me 5 ko 15. Me tahuri \frac{1}{3} me \frac{3}{5} ki te hautau me te tautūnga 15.
-\frac{1}{20}\times \frac{5+9}{15}
Tā te mea he rite te tauraro o \frac{5}{15} me \frac{9}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{1}{20}\times \frac{14}{15}
Tāpirihia te 5 ki te 9, ka 14.
\frac{-14}{20\times 15}
Me whakarea te -\frac{1}{20} ki te \frac{14}{15} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-14}{300}
Mahia ngā whakarea i roto i te hautanga \frac{-14}{20\times 15}.
-\frac{7}{150}
Whakahekea te hautanga \frac{-14}{300} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}