Aromātai
\frac{9}{20}=0.45
Tauwehe
\frac{3 ^ {2}}{2 ^ {2} \cdot 5} = 0.45
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{3}{4}+\frac{2}{1}}{\frac{3}{1}-\frac{13}{8}}-\left(-\frac{11}{6}-\frac{\frac{2}{7}+1}{-\frac{5}{14}}+\frac{1}{30}\right)-\left(-\frac{1}{4}\right)
Whakawehea te 1 ki te 1, kia riro ko 1.
\frac{\frac{3}{4}+2}{\frac{3}{1}-\frac{13}{8}}-\left(-\frac{11}{6}-\frac{\frac{2}{7}+1}{-\frac{5}{14}}+\frac{1}{30}\right)-\left(-\frac{1}{4}\right)
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\frac{\frac{3}{4}+\frac{8}{4}}{\frac{3}{1}-\frac{13}{8}}-\left(-\frac{11}{6}-\frac{\frac{2}{7}+1}{-\frac{5}{14}}+\frac{1}{30}\right)-\left(-\frac{1}{4}\right)
Me tahuri te 2 ki te hautau \frac{8}{4}.
\frac{\frac{3+8}{4}}{\frac{3}{1}-\frac{13}{8}}-\left(-\frac{11}{6}-\frac{\frac{2}{7}+1}{-\frac{5}{14}}+\frac{1}{30}\right)-\left(-\frac{1}{4}\right)
Tā te mea he rite te tauraro o \frac{3}{4} me \frac{8}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{11}{4}}{\frac{3}{1}-\frac{13}{8}}-\left(-\frac{11}{6}-\frac{\frac{2}{7}+1}{-\frac{5}{14}}+\frac{1}{30}\right)-\left(-\frac{1}{4}\right)
Tāpirihia te 3 ki te 8, ka 11.
\frac{\frac{11}{4}}{3-\frac{13}{8}}-\left(-\frac{11}{6}-\frac{\frac{2}{7}+1}{-\frac{5}{14}}+\frac{1}{30}\right)-\left(-\frac{1}{4}\right)
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\frac{\frac{11}{4}}{\frac{24}{8}-\frac{13}{8}}-\left(-\frac{11}{6}-\frac{\frac{2}{7}+1}{-\frac{5}{14}}+\frac{1}{30}\right)-\left(-\frac{1}{4}\right)
Me tahuri te 3 ki te hautau \frac{24}{8}.
\frac{\frac{11}{4}}{\frac{24-13}{8}}-\left(-\frac{11}{6}-\frac{\frac{2}{7}+1}{-\frac{5}{14}}+\frac{1}{30}\right)-\left(-\frac{1}{4}\right)
Tā te mea he rite te tauraro o \frac{24}{8} me \frac{13}{8}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{11}{4}}{\frac{11}{8}}-\left(-\frac{11}{6}-\frac{\frac{2}{7}+1}{-\frac{5}{14}}+\frac{1}{30}\right)-\left(-\frac{1}{4}\right)
Tangohia te 13 i te 24, ka 11.
\frac{11}{4}\times \frac{8}{11}-\left(-\frac{11}{6}-\frac{\frac{2}{7}+1}{-\frac{5}{14}}+\frac{1}{30}\right)-\left(-\frac{1}{4}\right)
Whakawehe \frac{11}{4} ki te \frac{11}{8} mā te whakarea \frac{11}{4} ki te tau huripoki o \frac{11}{8}.
\frac{11\times 8}{4\times 11}-\left(-\frac{11}{6}-\frac{\frac{2}{7}+1}{-\frac{5}{14}}+\frac{1}{30}\right)-\left(-\frac{1}{4}\right)
Me whakarea te \frac{11}{4} ki te \frac{8}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{8}{4}-\left(-\frac{11}{6}-\frac{\frac{2}{7}+1}{-\frac{5}{14}}+\frac{1}{30}\right)-\left(-\frac{1}{4}\right)
Me whakakore tahi te 11 i te taurunga me te tauraro.
2-\left(-\frac{11}{6}-\frac{\frac{2}{7}+1}{-\frac{5}{14}}+\frac{1}{30}\right)-\left(-\frac{1}{4}\right)
Whakawehea te 8 ki te 4, kia riro ko 2.
2-\left(-\frac{11}{6}-\frac{\frac{2}{7}+\frac{7}{7}}{-\frac{5}{14}}+\frac{1}{30}\right)-\left(-\frac{1}{4}\right)
Me tahuri te 1 ki te hautau \frac{7}{7}.
2-\left(-\frac{11}{6}-\frac{\frac{2+7}{7}}{-\frac{5}{14}}+\frac{1}{30}\right)-\left(-\frac{1}{4}\right)
Tā te mea he rite te tauraro o \frac{2}{7} me \frac{7}{7}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
2-\left(-\frac{11}{6}-\frac{\frac{9}{7}}{-\frac{5}{14}}+\frac{1}{30}\right)-\left(-\frac{1}{4}\right)
Tāpirihia te 2 ki te 7, ka 9.
2-\left(-\frac{11}{6}-\frac{9}{7}\left(-\frac{14}{5}\right)+\frac{1}{30}\right)-\left(-\frac{1}{4}\right)
Whakawehe \frac{9}{7} ki te -\frac{5}{14} mā te whakarea \frac{9}{7} ki te tau huripoki o -\frac{5}{14}.
2-\left(-\frac{11}{6}-\frac{9\left(-14\right)}{7\times 5}+\frac{1}{30}\right)-\left(-\frac{1}{4}\right)
Me whakarea te \frac{9}{7} ki te -\frac{14}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
2-\left(-\frac{11}{6}-\frac{-126}{35}+\frac{1}{30}\right)-\left(-\frac{1}{4}\right)
Mahia ngā whakarea i roto i te hautanga \frac{9\left(-14\right)}{7\times 5}.
2-\left(-\frac{11}{6}-\left(-\frac{18}{5}\right)+\frac{1}{30}\right)-\left(-\frac{1}{4}\right)
Whakahekea te hautanga \frac{-126}{35} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
2-\left(-\frac{11}{6}+\frac{18}{5}+\frac{1}{30}\right)-\left(-\frac{1}{4}\right)
Ko te tauaro o -\frac{18}{5} ko \frac{18}{5}.
2-\left(-\frac{55}{30}+\frac{108}{30}+\frac{1}{30}\right)-\left(-\frac{1}{4}\right)
Ko te maha noa iti rawa atu o 6 me 5 ko 30. Me tahuri -\frac{11}{6} me \frac{18}{5} ki te hautau me te tautūnga 30.
2-\left(\frac{-55+108}{30}+\frac{1}{30}\right)-\left(-\frac{1}{4}\right)
Tā te mea he rite te tauraro o -\frac{55}{30} me \frac{108}{30}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
2-\left(\frac{53}{30}+\frac{1}{30}\right)-\left(-\frac{1}{4}\right)
Tāpirihia te -55 ki te 108, ka 53.
2-\frac{53+1}{30}-\left(-\frac{1}{4}\right)
Tā te mea he rite te tauraro o \frac{53}{30} me \frac{1}{30}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
2-\frac{54}{30}-\left(-\frac{1}{4}\right)
Tāpirihia te 53 ki te 1, ka 54.
2-\frac{9}{5}-\left(-\frac{1}{4}\right)
Whakahekea te hautanga \frac{54}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{10}{5}-\frac{9}{5}-\left(-\frac{1}{4}\right)
Me tahuri te 2 ki te hautau \frac{10}{5}.
\frac{10-9}{5}-\left(-\frac{1}{4}\right)
Tā te mea he rite te tauraro o \frac{10}{5} me \frac{9}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{5}-\left(-\frac{1}{4}\right)
Tangohia te 9 i te 10, ka 1.
\frac{1}{5}+\frac{1}{4}
Ko te tauaro o -\frac{1}{4} ko \frac{1}{4}.
\frac{4}{20}+\frac{5}{20}
Ko te maha noa iti rawa atu o 5 me 4 ko 20. Me tahuri \frac{1}{5} me \frac{1}{4} ki te hautau me te tautūnga 20.
\frac{4+5}{20}
Tā te mea he rite te tauraro o \frac{4}{20} me \frac{5}{20}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{9}{20}
Tāpirihia te 4 ki te 5, ka 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}