Aromātai (complex solution)
teka
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{273+x}{48+50+48+52}\times 0\times 1+\frac{8}{10}\times 0\times 15+\frac{15}{30}\times 0\times 75>0\times 5
Tāpirihia te 28 ki te 245, ka 273.
\frac{273+x}{98+48+52}\times 0\times 1+\frac{8}{10}\times 0\times 15+\frac{15}{30}\times 0\times 75>0\times 5
Tāpirihia te 48 ki te 50, ka 98.
\frac{273+x}{146+52}\times 0\times 1+\frac{8}{10}\times 0\times 15+\frac{15}{30}\times 0\times 75>0\times 5
Tāpirihia te 98 ki te 48, ka 146.
\frac{273+x}{198}\times 0\times 1+\frac{8}{10}\times 0\times 15+\frac{15}{30}\times 0\times 75>0\times 5
Tāpirihia te 146 ki te 52, ka 198.
\frac{273+x}{198}\times 0+\frac{8}{10}\times 0\times 15+\frac{15}{30}\times 0\times 75>0\times 5
Whakareatia te 0 ki te 1, ka 0.
0+\frac{8}{10}\times 0\times 15+\frac{15}{30}\times 0\times 75>0\times 5
Ko te tau i whakarea ki te kore ka hua ko te kore.
0+\frac{4}{5}\times 0\times 15+\frac{15}{30}\times 0\times 75>0\times 5
Whakahekea te hautanga \frac{8}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
0+0\times 15+\frac{15}{30}\times 0\times 75>0\times 5
Whakareatia te \frac{4}{5} ki te 0, ka 0.
0+0+\frac{15}{30}\times 0\times 75>0\times 5
Whakareatia te 0 ki te 15, ka 0.
\frac{15}{30}\times 0\times 75>0\times 5
Tāpirihia te 0 ki te 0, ka 0.
\frac{1}{2}\times 0\times 75>0\times 5
Whakahekea te hautanga \frac{15}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 15.
0\times 75>0\times 5
Whakareatia te \frac{1}{2} ki te 0, ka 0.
0>0\times 5
Whakareatia te 0 ki te 75, ka 0.
0>0
Whakareatia te 0 ki te 5, ka 0.
\text{false}
Whakatauritea te 0 me te 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}