Whakaoti mō x
x>-\frac{213}{5}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{52.5+x}{48+50+48+52}\times 0.1+\frac{8}{10}\times 0.15+\frac{15}{30}\times 0.75>0.5
Tāpirihia te 28 ki te 24.5, ka 52.5.
\frac{52.5+x}{98+48+52}\times 0.1+\frac{8}{10}\times 0.15+\frac{15}{30}\times 0.75>0.5
Tāpirihia te 48 ki te 50, ka 98.
\frac{52.5+x}{146+52}\times 0.1+\frac{8}{10}\times 0.15+\frac{15}{30}\times 0.75>0.5
Tāpirihia te 98 ki te 48, ka 146.
\frac{52.5+x}{198}\times 0.1+\frac{8}{10}\times 0.15+\frac{15}{30}\times 0.75>0.5
Tāpirihia te 146 ki te 52, ka 198.
\frac{52.5+x}{198}\times 0.1+\frac{4}{5}\times 0.15+\frac{15}{30}\times 0.75>0.5
Whakahekea te hautanga \frac{8}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{52.5+x}{198}\times 0.1+\frac{4}{5}\times \frac{3}{20}+\frac{15}{30}\times 0.75>0.5
Me tahuri ki tau ā-ira 0.15 ki te hautau \frac{15}{100}. Whakahekea te hautanga \frac{15}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{52.5+x}{198}\times 0.1+\frac{4\times 3}{5\times 20}+\frac{15}{30}\times 0.75>0.5
Me whakarea te \frac{4}{5} ki te \frac{3}{20} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{52.5+x}{198}\times 0.1+\frac{12}{100}+\frac{15}{30}\times 0.75>0.5
Mahia ngā whakarea i roto i te hautanga \frac{4\times 3}{5\times 20}.
\frac{52.5+x}{198}\times 0.1+\frac{3}{25}+\frac{15}{30}\times 0.75>0.5
Whakahekea te hautanga \frac{12}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{52.5+x}{198}\times 0.1+\frac{3}{25}+\frac{1}{2}\times 0.75>0.5
Whakahekea te hautanga \frac{15}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 15.
\frac{52.5+x}{198}\times 0.1+\frac{3}{25}+\frac{1}{2}\times \frac{3}{4}>0.5
Me tahuri ki tau ā-ira 0.75 ki te hautau \frac{75}{100}. Whakahekea te hautanga \frac{75}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{52.5+x}{198}\times 0.1+\frac{3}{25}+\frac{1\times 3}{2\times 4}>0.5
Me whakarea te \frac{1}{2} ki te \frac{3}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{52.5+x}{198}\times 0.1+\frac{3}{25}+\frac{3}{8}>0.5
Mahia ngā whakarea i roto i te hautanga \frac{1\times 3}{2\times 4}.
\frac{52.5+x}{198}\times 0.1+\frac{24}{200}+\frac{75}{200}>0.5
Ko te maha noa iti rawa atu o 25 me 8 ko 200. Me tahuri \frac{3}{25} me \frac{3}{8} ki te hautau me te tautūnga 200.
\frac{52.5+x}{198}\times 0.1+\frac{24+75}{200}>0.5
Tā te mea he rite te tauraro o \frac{24}{200} me \frac{75}{200}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{52.5+x}{198}\times 0.1+\frac{99}{200}>0.5
Tāpirihia te 24 ki te 75, ka 99.
\left(\frac{35}{132}+\frac{1}{198}x\right)\times 0.1+\frac{99}{200}>0.5
Whakawehea ia wā o 52.5+x ki te 198, kia riro ko \frac{35}{132}+\frac{1}{198}x.
\frac{7}{264}+\frac{1}{198}x\times 0.1+\frac{99}{200}>0.5
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{35}{132}+\frac{1}{198}x ki te 0.1.
\frac{7}{264}+\frac{1}{198}x\times \frac{1}{10}+\frac{99}{200}>0.5
Me tahuri ki tau ā-ira 0.1 ki te hautau \frac{1}{10}.
\frac{7}{264}+\frac{1\times 1}{198\times 10}x+\frac{99}{200}>0.5
Me whakarea te \frac{1}{198} ki te \frac{1}{10} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{7}{264}+\frac{1}{1980}x+\frac{99}{200}>0.5
Mahia ngā whakarea i roto i te hautanga \frac{1\times 1}{198\times 10}.
\frac{175}{6600}+\frac{1}{1980}x+\frac{3267}{6600}>0.5
Ko te maha noa iti rawa atu o 264 me 200 ko 6600. Me tahuri \frac{7}{264} me \frac{99}{200} ki te hautau me te tautūnga 6600.
\frac{175+3267}{6600}+\frac{1}{1980}x>0.5
Tā te mea he rite te tauraro o \frac{175}{6600} me \frac{3267}{6600}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3442}{6600}+\frac{1}{1980}x>0.5
Tāpirihia te 175 ki te 3267, ka 3442.
\frac{1721}{3300}+\frac{1}{1980}x>0.5
Whakahekea te hautanga \frac{3442}{6600} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{1}{1980}x>0.5-\frac{1721}{3300}
Tangohia te \frac{1721}{3300} mai i ngā taha e rua.
\frac{1}{1980}x>\frac{1}{2}-\frac{1721}{3300}
Me tahuri ki tau ā-ira 0.5 ki te hautau \frac{5}{10}. Whakahekea te hautanga \frac{5}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{1}{1980}x>\frac{1650}{3300}-\frac{1721}{3300}
Ko te maha noa iti rawa atu o 2 me 3300 ko 3300. Me tahuri \frac{1}{2} me \frac{1721}{3300} ki te hautau me te tautūnga 3300.
\frac{1}{1980}x>\frac{1650-1721}{3300}
Tā te mea he rite te tauraro o \frac{1650}{3300} me \frac{1721}{3300}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{1980}x>-\frac{71}{3300}
Tangohia te 1721 i te 1650, ka -71.
x>-\frac{71}{3300}\times 1980
Me whakarea ngā taha e rua ki te 1980, te tau utu o \frac{1}{1980}. Nō te mea he >0 te \frac{1}{1980}, ka noho pērā tonu te ahunga koreōrite.
x>\frac{-71\times 1980}{3300}
Tuhia te -\frac{71}{3300}\times 1980 hei hautanga kotahi.
x>\frac{-140580}{3300}
Whakareatia te -71 ki te 1980, ka -140580.
x>-\frac{213}{5}
Whakahekea te hautanga \frac{-140580}{3300} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 660.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}