Whakaoti mō x
x = -\frac{16000}{147} = -108\frac{124}{147} \approx -108.843537415
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{7}{12}+\frac{24.5}{50}\times \frac{x}{48+52}\right)\times 0.1+\frac{8}{10}\times 0.15+\frac{15}{30}\times 0.75=0.5
Whakahekea te hautanga \frac{28}{48} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\left(\frac{7}{12}+\frac{245}{500}\times \frac{x}{48+52}\right)\times 0.1+\frac{8}{10}\times 0.15+\frac{15}{30}\times 0.75=0.5
Whakarohaina te \frac{24.5}{50} mā te whakarea i te taurunga me te tauraro ki te 10.
\left(\frac{7}{12}+\frac{49}{100}\times \frac{x}{48+52}\right)\times 0.1+\frac{8}{10}\times 0.15+\frac{15}{30}\times 0.75=0.5
Whakahekea te hautanga \frac{245}{500} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\left(\frac{7}{12}+\frac{49}{100}\times \frac{x}{100}\right)\times 0.1+\frac{8}{10}\times 0.15+\frac{15}{30}\times 0.75=0.5
Tāpirihia te 48 ki te 52, ka 100.
\left(\frac{7}{12}+\frac{49x}{100\times 100}\right)\times 0.1+\frac{8}{10}\times 0.15+\frac{15}{30}\times 0.75=0.5
Me whakarea te \frac{49}{100} ki te \frac{x}{100} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\left(\frac{7\times 2500}{30000}+\frac{3\times 49x}{30000}\right)\times 0.1+\frac{8}{10}\times 0.15+\frac{15}{30}\times 0.75=0.5
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 12 me 100\times 100 ko 30000. Whakareatia \frac{7}{12} ki te \frac{2500}{2500}. Whakareatia \frac{49x}{100\times 100} ki te \frac{3}{3}.
\frac{7\times 2500+3\times 49x}{30000}\times 0.1+\frac{8}{10}\times 0.15+\frac{15}{30}\times 0.75=0.5
Tā te mea he rite te tauraro o \frac{7\times 2500}{30000} me \frac{3\times 49x}{30000}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{17500+147x}{30000}\times 0.1+\frac{8}{10}\times 0.15+\frac{15}{30}\times 0.75=0.5
Mahia ngā whakarea i roto o 7\times 2500+3\times 49x.
\frac{17500+147x}{30000}\times 0.1+\frac{4}{5}\times 0.15+\frac{15}{30}\times 0.75=0.5
Whakahekea te hautanga \frac{8}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{17500+147x}{30000}\times 0.1+\frac{4}{5}\times \frac{3}{20}+\frac{15}{30}\times 0.75=0.5
Me tahuri ki tau ā-ira 0.15 ki te hautau \frac{15}{100}. Whakahekea te hautanga \frac{15}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{17500+147x}{30000}\times 0.1+\frac{4\times 3}{5\times 20}+\frac{15}{30}\times 0.75=0.5
Me whakarea te \frac{4}{5} ki te \frac{3}{20} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{17500+147x}{30000}\times 0.1+\frac{12}{100}+\frac{15}{30}\times 0.75=0.5
Mahia ngā whakarea i roto i te hautanga \frac{4\times 3}{5\times 20}.
\frac{17500+147x}{30000}\times 0.1+\frac{3}{25}+\frac{15}{30}\times 0.75=0.5
Whakahekea te hautanga \frac{12}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{17500+147x}{30000}\times 0.1+\frac{3}{25}+\frac{1}{2}\times 0.75=0.5
Whakahekea te hautanga \frac{15}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 15.
\frac{17500+147x}{30000}\times 0.1+\frac{3}{25}+\frac{1}{2}\times \frac{3}{4}=0.5
Me tahuri ki tau ā-ira 0.75 ki te hautau \frac{75}{100}. Whakahekea te hautanga \frac{75}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{17500+147x}{30000}\times 0.1+\frac{3}{25}+\frac{1\times 3}{2\times 4}=0.5
Me whakarea te \frac{1}{2} ki te \frac{3}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{17500+147x}{30000}\times 0.1+\frac{3}{25}+\frac{3}{8}=0.5
Mahia ngā whakarea i roto i te hautanga \frac{1\times 3}{2\times 4}.
\frac{17500+147x}{30000}\times 0.1+\frac{24}{200}+\frac{75}{200}=0.5
Ko te maha noa iti rawa atu o 25 me 8 ko 200. Me tahuri \frac{3}{25} me \frac{3}{8} ki te hautau me te tautūnga 200.
\frac{17500+147x}{30000}\times 0.1+\frac{24+75}{200}=0.5
Tā te mea he rite te tauraro o \frac{24}{200} me \frac{75}{200}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{17500+147x}{30000}\times 0.1+\frac{99}{200}=0.5
Tāpirihia te 24 ki te 75, ka 99.
\left(\frac{7}{12}+\frac{49}{10000}x\right)\times 0.1+\frac{99}{200}=0.5
Whakawehea ia wā o 17500+147x ki te 30000, kia riro ko \frac{7}{12}+\frac{49}{10000}x.
\frac{7}{12}\times 0.1+\frac{49}{10000}x\times 0.1+\frac{99}{200}=0.5
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{7}{12}+\frac{49}{10000}x ki te 0.1.
\frac{7}{12}\times \frac{1}{10}+\frac{49}{10000}x\times 0.1+\frac{99}{200}=0.5
Me tahuri ki tau ā-ira 0.1 ki te hautau \frac{1}{10}.
\frac{7\times 1}{12\times 10}+\frac{49}{10000}x\times 0.1+\frac{99}{200}=0.5
Me whakarea te \frac{7}{12} ki te \frac{1}{10} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{7}{120}+\frac{49}{10000}x\times 0.1+\frac{99}{200}=0.5
Mahia ngā whakarea i roto i te hautanga \frac{7\times 1}{12\times 10}.
\frac{7}{120}+\frac{49}{10000}x\times \frac{1}{10}+\frac{99}{200}=0.5
Me tahuri ki tau ā-ira 0.1 ki te hautau \frac{1}{10}.
\frac{7}{120}+\frac{49\times 1}{10000\times 10}x+\frac{99}{200}=0.5
Me whakarea te \frac{49}{10000} ki te \frac{1}{10} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{7}{120}+\frac{49}{100000}x+\frac{99}{200}=0.5
Mahia ngā whakarea i roto i te hautanga \frac{49\times 1}{10000\times 10}.
\frac{35}{600}+\frac{49}{100000}x+\frac{297}{600}=0.5
Ko te maha noa iti rawa atu o 120 me 200 ko 600. Me tahuri \frac{7}{120} me \frac{99}{200} ki te hautau me te tautūnga 600.
\frac{35+297}{600}+\frac{49}{100000}x=0.5
Tā te mea he rite te tauraro o \frac{35}{600} me \frac{297}{600}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{332}{600}+\frac{49}{100000}x=0.5
Tāpirihia te 35 ki te 297, ka 332.
\frac{83}{150}+\frac{49}{100000}x=0.5
Whakahekea te hautanga \frac{332}{600} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{49}{100000}x=0.5-\frac{83}{150}
Tangohia te \frac{83}{150} mai i ngā taha e rua.
\frac{49}{100000}x=\frac{1}{2}-\frac{83}{150}
Me tahuri ki tau ā-ira 0.5 ki te hautau \frac{5}{10}. Whakahekea te hautanga \frac{5}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{49}{100000}x=\frac{75}{150}-\frac{83}{150}
Ko te maha noa iti rawa atu o 2 me 150 ko 150. Me tahuri \frac{1}{2} me \frac{83}{150} ki te hautau me te tautūnga 150.
\frac{49}{100000}x=\frac{75-83}{150}
Tā te mea he rite te tauraro o \frac{75}{150} me \frac{83}{150}, me tango rāua mā te tango i ō raua taurunga.
\frac{49}{100000}x=\frac{-8}{150}
Tangohia te 83 i te 75, ka -8.
\frac{49}{100000}x=-\frac{4}{75}
Whakahekea te hautanga \frac{-8}{150} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{4}{75}\times \frac{100000}{49}
Me whakarea ngā taha e rua ki te \frac{100000}{49}, te tau utu o \frac{49}{100000}.
x=\frac{-4\times 100000}{75\times 49}
Me whakarea te -\frac{4}{75} ki te \frac{100000}{49} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{-400000}{3675}
Mahia ngā whakarea i roto i te hautanga \frac{-4\times 100000}{75\times 49}.
x=-\frac{16000}{147}
Whakahekea te hautanga \frac{-400000}{3675} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}