Whakaoti mō x
x=24
Graph
Tohaina
Kua tāruatia ki te papatopenga
8x\times \frac{1}{x}+16=x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 16x, arā, te tauraro pātahi he tino iti rawa te kitea o 2,x,16.
\frac{8}{x}x+16=x
Tuhia te 8\times \frac{1}{x} hei hautanga kotahi.
\frac{8x}{x}+16=x
Tuhia te \frac{8}{x}x hei hautanga kotahi.
\frac{8x}{x}+\frac{16x}{x}=x
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 16 ki te \frac{x}{x}.
\frac{8x+16x}{x}=x
Tā te mea he rite te tauraro o \frac{8x}{x} me \frac{16x}{x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{24x}{x}=x
Whakakotahitia ngā kupu rite i 8x+16x.
\frac{24x}{x}-x=0
Tangohia te x mai i ngā taha e rua.
\frac{24x}{x}-\frac{xx}{x}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x ki te \frac{x}{x}.
\frac{24x-xx}{x}=0
Tā te mea he rite te tauraro o \frac{24x}{x} me \frac{xx}{x}, me tango rāua mā te tango i ō raua taurunga.
\frac{24x-x^{2}}{x}=0
Mahia ngā whakarea i roto o 24x-xx.
24x-x^{2}=0
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
x\left(24-x\right)=0
Tauwehea te x.
x=0 x=24
Hei kimi otinga whārite, me whakaoti te x=0 me te 24-x=0.
x=24
Tē taea kia ōrite te tāupe x ki 0.
8x\times \frac{1}{x}+16=x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 16x, arā, te tauraro pātahi he tino iti rawa te kitea o 2,x,16.
\frac{8}{x}x+16=x
Tuhia te 8\times \frac{1}{x} hei hautanga kotahi.
\frac{8x}{x}+16=x
Tuhia te \frac{8}{x}x hei hautanga kotahi.
\frac{8x}{x}+\frac{16x}{x}=x
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 16 ki te \frac{x}{x}.
\frac{8x+16x}{x}=x
Tā te mea he rite te tauraro o \frac{8x}{x} me \frac{16x}{x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{24x}{x}=x
Whakakotahitia ngā kupu rite i 8x+16x.
\frac{24x}{x}-x=0
Tangohia te x mai i ngā taha e rua.
\frac{24x}{x}-\frac{xx}{x}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x ki te \frac{x}{x}.
\frac{24x-xx}{x}=0
Tā te mea he rite te tauraro o \frac{24x}{x} me \frac{xx}{x}, me tango rāua mā te tango i ō raua taurunga.
\frac{24x-x^{2}}{x}=0
Mahia ngā whakarea i roto o 24x-xx.
24x-x^{2}=0
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
-x^{2}+24x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-24±\sqrt{24^{2}}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 24 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24±24}{2\left(-1\right)}
Tuhia te pūtakerua o te 24^{2}.
x=\frac{-24±24}{-2}
Whakareatia 2 ki te -1.
x=\frac{0}{-2}
Nā, me whakaoti te whārite x=\frac{-24±24}{-2} ina he tāpiri te ±. Tāpiri -24 ki te 24.
x=0
Whakawehe 0 ki te -2.
x=-\frac{48}{-2}
Nā, me whakaoti te whārite x=\frac{-24±24}{-2} ina he tango te ±. Tango 24 mai i -24.
x=24
Whakawehe -48 ki te -2.
x=0 x=24
Kua oti te whārite te whakatau.
x=24
Tē taea kia ōrite te tāupe x ki 0.
8x\times \frac{1}{x}+16=x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 16x, arā, te tauraro pātahi he tino iti rawa te kitea o 2,x,16.
\frac{8}{x}x+16=x
Tuhia te 8\times \frac{1}{x} hei hautanga kotahi.
\frac{8x}{x}+16=x
Tuhia te \frac{8}{x}x hei hautanga kotahi.
\frac{8x}{x}+\frac{16x}{x}=x
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 16 ki te \frac{x}{x}.
\frac{8x+16x}{x}=x
Tā te mea he rite te tauraro o \frac{8x}{x} me \frac{16x}{x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{24x}{x}=x
Whakakotahitia ngā kupu rite i 8x+16x.
\frac{24x}{x}-x=0
Tangohia te x mai i ngā taha e rua.
\frac{24x}{x}-\frac{xx}{x}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x ki te \frac{x}{x}.
\frac{24x-xx}{x}=0
Tā te mea he rite te tauraro o \frac{24x}{x} me \frac{xx}{x}, me tango rāua mā te tango i ō raua taurunga.
\frac{24x-x^{2}}{x}=0
Mahia ngā whakarea i roto o 24x-xx.
24x-x^{2}=0
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
-x^{2}+24x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+24x}{-1}=\frac{0}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{24}{-1}x=\frac{0}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-24x=\frac{0}{-1}
Whakawehe 24 ki te -1.
x^{2}-24x=0
Whakawehe 0 ki te -1.
x^{2}-24x+\left(-12\right)^{2}=\left(-12\right)^{2}
Whakawehea te -24, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -12. Nā, tāpiria te pūrua o te -12 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-24x+144=144
Pūrua -12.
\left(x-12\right)^{2}=144
Tauwehea x^{2}-24x+144. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-12\right)^{2}}=\sqrt{144}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-12=12 x-12=-12
Whakarūnātia.
x=24 x=0
Me tāpiri 12 ki ngā taha e rua o te whārite.
x=24
Tē taea kia ōrite te tāupe x ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}