Aromātai
\frac{21}{4}=5.25
Tauwehe
\frac{3 \cdot 7}{2 ^ {2}} = 5\frac{1}{4} = 5.25
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{5}{40}+\frac{16}{40}\right)\times \frac{\frac{5}{2}}{\frac{1}{4}}
Ko te maha noa iti rawa atu o 8 me 5 ko 40. Me tahuri \frac{1}{8} me \frac{2}{5} ki te hautau me te tautūnga 40.
\frac{5+16}{40}\times \frac{\frac{5}{2}}{\frac{1}{4}}
Tā te mea he rite te tauraro o \frac{5}{40} me \frac{16}{40}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{21}{40}\times \frac{\frac{5}{2}}{\frac{1}{4}}
Tāpirihia te 5 ki te 16, ka 21.
\frac{21}{40}\times \frac{5}{2}\times 4
Whakawehe \frac{5}{2} ki te \frac{1}{4} mā te whakarea \frac{5}{2} ki te tau huripoki o \frac{1}{4}.
\frac{21}{40}\times \frac{5\times 4}{2}
Tuhia te \frac{5}{2}\times 4 hei hautanga kotahi.
\frac{21}{40}\times \frac{20}{2}
Whakareatia te 5 ki te 4, ka 20.
\frac{21}{40}\times 10
Whakawehea te 20 ki te 2, kia riro ko 10.
\frac{21\times 10}{40}
Tuhia te \frac{21}{40}\times 10 hei hautanga kotahi.
\frac{210}{40}
Whakareatia te 21 ki te 10, ka 210.
\frac{21}{4}
Whakahekea te hautanga \frac{210}{40} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}