Aromātai
\frac{19}{6}\approx 3.166666667
Tauwehe
\frac{19}{2 \cdot 3} = 3\frac{1}{6} = 3.1666666666666665
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{4}{12}+\frac{9}{12}-\frac{5}{9}}{\frac{1}{6}}
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri \frac{1}{3} me \frac{3}{4} ki te hautau me te tautūnga 12.
\frac{\frac{4+9}{12}-\frac{5}{9}}{\frac{1}{6}}
Tā te mea he rite te tauraro o \frac{4}{12} me \frac{9}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{13}{12}-\frac{5}{9}}{\frac{1}{6}}
Tāpirihia te 4 ki te 9, ka 13.
\frac{\frac{39}{36}-\frac{20}{36}}{\frac{1}{6}}
Ko te maha noa iti rawa atu o 12 me 9 ko 36. Me tahuri \frac{13}{12} me \frac{5}{9} ki te hautau me te tautūnga 36.
\frac{\frac{39-20}{36}}{\frac{1}{6}}
Tā te mea he rite te tauraro o \frac{39}{36} me \frac{20}{36}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{19}{36}}{\frac{1}{6}}
Tangohia te 20 i te 39, ka 19.
\frac{19}{36}\times 6
Whakawehe \frac{19}{36} ki te \frac{1}{6} mā te whakarea \frac{19}{36} ki te tau huripoki o \frac{1}{6}.
\frac{19\times 6}{36}
Tuhia te \frac{19}{36}\times 6 hei hautanga kotahi.
\frac{114}{36}
Whakareatia te 19 ki te 6, ka 114.
\frac{19}{6}
Whakahekea te hautanga \frac{114}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}