Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{5}{10}+\frac{4}{10}}{\frac{3}{4}-\frac{1}{5}}=\frac{3}{7}
Ko te maha noa iti rawa atu o 2 me 5 ko 10. Me tahuri \frac{1}{2} me \frac{2}{5} ki te hautau me te tautūnga 10.
\frac{\frac{5+4}{10}}{\frac{3}{4}-\frac{1}{5}}=\frac{3}{7}
Tā te mea he rite te tauraro o \frac{5}{10} me \frac{4}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{9}{10}}{\frac{3}{4}-\frac{1}{5}}=\frac{3}{7}
Tāpirihia te 5 ki te 4, ka 9.
\frac{\frac{9}{10}}{\frac{15}{20}-\frac{4}{20}}=\frac{3}{7}
Ko te maha noa iti rawa atu o 4 me 5 ko 20. Me tahuri \frac{3}{4} me \frac{1}{5} ki te hautau me te tautūnga 20.
\frac{\frac{9}{10}}{\frac{15-4}{20}}=\frac{3}{7}
Tā te mea he rite te tauraro o \frac{15}{20} me \frac{4}{20}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{9}{10}}{\frac{11}{20}}=\frac{3}{7}
Tangohia te 4 i te 15, ka 11.
\frac{9}{10}\times \frac{20}{11}=\frac{3}{7}
Whakawehe \frac{9}{10} ki te \frac{11}{20} mā te whakarea \frac{9}{10} ki te tau huripoki o \frac{11}{20}.
\frac{9\times 20}{10\times 11}=\frac{3}{7}
Me whakarea te \frac{9}{10} ki te \frac{20}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{180}{110}=\frac{3}{7}
Mahia ngā whakarea i roto i te hautanga \frac{9\times 20}{10\times 11}.
\frac{18}{11}=\frac{3}{7}
Whakahekea te hautanga \frac{180}{110} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
\frac{126}{77}=\frac{33}{77}
Ko te maha noa iti rawa atu o 11 me 7 ko 77. Me tahuri \frac{18}{11} me \frac{3}{7} ki te hautau me te tautūnga 77.
\text{false}
Whakatauritea te \frac{126}{77} me te \frac{33}{77}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}