Aromātai
-\frac{z^{12}}{27x^{6}}
Whakaroha
-\frac{z^{12}}{27x^{6}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(z^{4}\right)^{3}}{\left(-3x^{2}\right)^{3}}
Kia whakarewa i te \frac{z^{4}}{-3x^{2}} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{z^{12}}{\left(-3x^{2}\right)^{3}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 4 me te 3 kia riro ai te 12.
\frac{z^{12}}{\left(-3\right)^{3}\left(x^{2}\right)^{3}}
Whakarohaina te \left(-3x^{2}\right)^{3}.
\frac{z^{12}}{\left(-3\right)^{3}x^{6}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 3 kia riro ai te 6.
\frac{z^{12}}{-27x^{6}}
Tātaihia te -3 mā te pū o 3, kia riro ko -27.
\frac{\left(z^{4}\right)^{3}}{\left(-3x^{2}\right)^{3}}
Kia whakarewa i te \frac{z^{4}}{-3x^{2}} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{z^{12}}{\left(-3x^{2}\right)^{3}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 4 me te 3 kia riro ai te 12.
\frac{z^{12}}{\left(-3\right)^{3}\left(x^{2}\right)^{3}}
Whakarohaina te \left(-3x^{2}\right)^{3}.
\frac{z^{12}}{\left(-3\right)^{3}x^{6}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 3 kia riro ai te 6.
\frac{z^{12}}{-27x^{6}}
Tātaihia te -3 mā te pū o 3, kia riro ko -27.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}