Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(z^{4}\right)^{3}}{\left(-3x^{2}\right)^{3}}
Kia whakarewa i te \frac{z^{4}}{-3x^{2}} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{z^{12}}{\left(-3x^{2}\right)^{3}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 4 me te 3 kia riro ai te 12.
\frac{z^{12}}{\left(-3\right)^{3}\left(x^{2}\right)^{3}}
Whakarohaina te \left(-3x^{2}\right)^{3}.
\frac{z^{12}}{\left(-3\right)^{3}x^{6}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 3 kia riro ai te 6.
\frac{z^{12}}{-27x^{6}}
Tātaihia te -3 mā te pū o 3, kia riro ko -27.
\frac{\left(z^{4}\right)^{3}}{\left(-3x^{2}\right)^{3}}
Kia whakarewa i te \frac{z^{4}}{-3x^{2}} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{z^{12}}{\left(-3x^{2}\right)^{3}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 4 me te 3 kia riro ai te 12.
\frac{z^{12}}{\left(-3\right)^{3}\left(x^{2}\right)^{3}}
Whakarohaina te \left(-3x^{2}\right)^{3}.
\frac{z^{12}}{\left(-3\right)^{3}x^{6}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 3 kia riro ai te 6.
\frac{z^{12}}{-27x^{6}}
Tātaihia te -3 mā te pū o 3, kia riro ko -27.