Aromātai
-\frac{1}{x-y}
Whakaroha
\frac{1}{y-x}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{x-y}{\left(x-y\right)^{2}}-\frac{x}{x^{2}-2xy}}{\frac{y}{x-2y}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x-y}{x^{2}-2xy+y^{2}}.
\frac{\frac{1}{x-y}-\frac{x}{x^{2}-2xy}}{\frac{y}{x-2y}}
Me whakakore tahi te x-y i te taurunga me te tauraro.
\frac{\frac{1}{x-y}-\frac{x}{x\left(x-2y\right)}}{\frac{y}{x-2y}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x}{x^{2}-2xy}.
\frac{\frac{1}{x-y}-\frac{1}{x-2y}}{\frac{y}{x-2y}}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{\frac{x-2y}{\left(x-2y\right)\left(x-y\right)}-\frac{x-y}{\left(x-2y\right)\left(x-y\right)}}{\frac{y}{x-2y}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x-y me x-2y ko \left(x-2y\right)\left(x-y\right). Whakareatia \frac{1}{x-y} ki te \frac{x-2y}{x-2y}. Whakareatia \frac{1}{x-2y} ki te \frac{x-y}{x-y}.
\frac{\frac{x-2y-\left(x-y\right)}{\left(x-2y\right)\left(x-y\right)}}{\frac{y}{x-2y}}
Tā te mea he rite te tauraro o \frac{x-2y}{\left(x-2y\right)\left(x-y\right)} me \frac{x-y}{\left(x-2y\right)\left(x-y\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{x-2y-x+y}{\left(x-2y\right)\left(x-y\right)}}{\frac{y}{x-2y}}
Mahia ngā whakarea i roto o x-2y-\left(x-y\right).
\frac{\frac{-y}{\left(x-2y\right)\left(x-y\right)}}{\frac{y}{x-2y}}
Whakakotahitia ngā kupu rite i x-2y-x+y.
\frac{-y\left(x-2y\right)}{\left(x-2y\right)\left(x-y\right)y}
Whakawehe \frac{-y}{\left(x-2y\right)\left(x-y\right)} ki te \frac{y}{x-2y} mā te whakarea \frac{-y}{\left(x-2y\right)\left(x-y\right)} ki te tau huripoki o \frac{y}{x-2y}.
\frac{-1}{x-y}
Me whakakore tahi te y\left(x-2y\right) i te taurunga me te tauraro.
\frac{\frac{x-y}{\left(x-y\right)^{2}}-\frac{x}{x^{2}-2xy}}{\frac{y}{x-2y}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x-y}{x^{2}-2xy+y^{2}}.
\frac{\frac{1}{x-y}-\frac{x}{x^{2}-2xy}}{\frac{y}{x-2y}}
Me whakakore tahi te x-y i te taurunga me te tauraro.
\frac{\frac{1}{x-y}-\frac{x}{x\left(x-2y\right)}}{\frac{y}{x-2y}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x}{x^{2}-2xy}.
\frac{\frac{1}{x-y}-\frac{1}{x-2y}}{\frac{y}{x-2y}}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{\frac{x-2y}{\left(x-2y\right)\left(x-y\right)}-\frac{x-y}{\left(x-2y\right)\left(x-y\right)}}{\frac{y}{x-2y}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x-y me x-2y ko \left(x-2y\right)\left(x-y\right). Whakareatia \frac{1}{x-y} ki te \frac{x-2y}{x-2y}. Whakareatia \frac{1}{x-2y} ki te \frac{x-y}{x-y}.
\frac{\frac{x-2y-\left(x-y\right)}{\left(x-2y\right)\left(x-y\right)}}{\frac{y}{x-2y}}
Tā te mea he rite te tauraro o \frac{x-2y}{\left(x-2y\right)\left(x-y\right)} me \frac{x-y}{\left(x-2y\right)\left(x-y\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{x-2y-x+y}{\left(x-2y\right)\left(x-y\right)}}{\frac{y}{x-2y}}
Mahia ngā whakarea i roto o x-2y-\left(x-y\right).
\frac{\frac{-y}{\left(x-2y\right)\left(x-y\right)}}{\frac{y}{x-2y}}
Whakakotahitia ngā kupu rite i x-2y-x+y.
\frac{-y\left(x-2y\right)}{\left(x-2y\right)\left(x-y\right)y}
Whakawehe \frac{-y}{\left(x-2y\right)\left(x-y\right)} ki te \frac{y}{x-2y} mā te whakarea \frac{-y}{\left(x-2y\right)\left(x-y\right)} ki te tau huripoki o \frac{y}{x-2y}.
\frac{-1}{x-y}
Me whakakore tahi te y\left(x-2y\right) i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}