Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{x-y}{\left(x-y\right)^{2}}-\frac{x}{x^{2}-2xy}}{\frac{y}{x-2y}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x-y}{x^{2}-2xy+y^{2}}.
\frac{\frac{1}{x-y}-\frac{x}{x^{2}-2xy}}{\frac{y}{x-2y}}
Me whakakore tahi te x-y i te taurunga me te tauraro.
\frac{\frac{1}{x-y}-\frac{x}{x\left(x-2y\right)}}{\frac{y}{x-2y}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x}{x^{2}-2xy}.
\frac{\frac{1}{x-y}-\frac{1}{x-2y}}{\frac{y}{x-2y}}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{\frac{x-2y}{\left(x-2y\right)\left(x-y\right)}-\frac{x-y}{\left(x-2y\right)\left(x-y\right)}}{\frac{y}{x-2y}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x-y me x-2y ko \left(x-2y\right)\left(x-y\right). Whakareatia \frac{1}{x-y} ki te \frac{x-2y}{x-2y}. Whakareatia \frac{1}{x-2y} ki te \frac{x-y}{x-y}.
\frac{\frac{x-2y-\left(x-y\right)}{\left(x-2y\right)\left(x-y\right)}}{\frac{y}{x-2y}}
Tā te mea he rite te tauraro o \frac{x-2y}{\left(x-2y\right)\left(x-y\right)} me \frac{x-y}{\left(x-2y\right)\left(x-y\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{x-2y-x+y}{\left(x-2y\right)\left(x-y\right)}}{\frac{y}{x-2y}}
Mahia ngā whakarea i roto o x-2y-\left(x-y\right).
\frac{\frac{-y}{\left(x-2y\right)\left(x-y\right)}}{\frac{y}{x-2y}}
Whakakotahitia ngā kupu rite i x-2y-x+y.
\frac{-y\left(x-2y\right)}{\left(x-2y\right)\left(x-y\right)y}
Whakawehe \frac{-y}{\left(x-2y\right)\left(x-y\right)} ki te \frac{y}{x-2y} mā te whakarea \frac{-y}{\left(x-2y\right)\left(x-y\right)} ki te tau huripoki o \frac{y}{x-2y}.
\frac{-1}{x-y}
Me whakakore tahi te y\left(x-2y\right) i te taurunga me te tauraro.
\frac{\frac{x-y}{\left(x-y\right)^{2}}-\frac{x}{x^{2}-2xy}}{\frac{y}{x-2y}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x-y}{x^{2}-2xy+y^{2}}.
\frac{\frac{1}{x-y}-\frac{x}{x^{2}-2xy}}{\frac{y}{x-2y}}
Me whakakore tahi te x-y i te taurunga me te tauraro.
\frac{\frac{1}{x-y}-\frac{x}{x\left(x-2y\right)}}{\frac{y}{x-2y}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x}{x^{2}-2xy}.
\frac{\frac{1}{x-y}-\frac{1}{x-2y}}{\frac{y}{x-2y}}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{\frac{x-2y}{\left(x-2y\right)\left(x-y\right)}-\frac{x-y}{\left(x-2y\right)\left(x-y\right)}}{\frac{y}{x-2y}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x-y me x-2y ko \left(x-2y\right)\left(x-y\right). Whakareatia \frac{1}{x-y} ki te \frac{x-2y}{x-2y}. Whakareatia \frac{1}{x-2y} ki te \frac{x-y}{x-y}.
\frac{\frac{x-2y-\left(x-y\right)}{\left(x-2y\right)\left(x-y\right)}}{\frac{y}{x-2y}}
Tā te mea he rite te tauraro o \frac{x-2y}{\left(x-2y\right)\left(x-y\right)} me \frac{x-y}{\left(x-2y\right)\left(x-y\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{x-2y-x+y}{\left(x-2y\right)\left(x-y\right)}}{\frac{y}{x-2y}}
Mahia ngā whakarea i roto o x-2y-\left(x-y\right).
\frac{\frac{-y}{\left(x-2y\right)\left(x-y\right)}}{\frac{y}{x-2y}}
Whakakotahitia ngā kupu rite i x-2y-x+y.
\frac{-y\left(x-2y\right)}{\left(x-2y\right)\left(x-y\right)y}
Whakawehe \frac{-y}{\left(x-2y\right)\left(x-y\right)} ki te \frac{y}{x-2y} mā te whakarea \frac{-y}{\left(x-2y\right)\left(x-y\right)} ki te tau huripoki o \frac{y}{x-2y}.
\frac{-1}{x-y}
Me whakakore tahi te y\left(x-2y\right) i te taurunga me te tauraro.