Whakaoti mō x
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{x}{2^{3}}\right)^{2}-x^{2}\times 3+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
Whakareatia te x ki te x, ka x^{2}.
\left(\frac{x}{8}\right)^{2}-x^{2}\times 3+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
\frac{x^{2}}{8^{2}}-x^{2}\times 3+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
Kia whakarewa i te \frac{x}{8} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{x^{2}}{8^{2}}-\frac{x^{2}\times 3\times 8^{2}}{8^{2}}+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x^{2}\times 3 ki te \frac{8^{2}}{8^{2}}.
\frac{x^{2}-x^{2}\times 3\times 8^{2}}{8^{2}}+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
Tā te mea he rite te tauraro o \frac{x^{2}}{8^{2}} me \frac{x^{2}\times 3\times 8^{2}}{8^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{x^{2}-192x^{2}}{8^{2}}+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
Mahia ngā whakarea i roto o x^{2}-x^{2}\times 3\times 8^{2}.
\frac{-191x^{2}}{8^{2}}+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
Whakakotahitia ngā kupu rite i x^{2}-192x^{2}.
\frac{-191x^{2}}{8^{2}}+15\times \frac{x^{2}}{2^{2}}=x^{2}
Kia whakarewa i te \frac{x}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{-191x^{2}}{8^{2}}+\frac{15x^{2}}{2^{2}}=x^{2}
Tuhia te 15\times \frac{x^{2}}{2^{2}} hei hautanga kotahi.
\frac{-191x^{2}}{64}+\frac{16\times 15x^{2}}{64}=x^{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 8^{2} me 2^{2} ko 64. Whakareatia \frac{15x^{2}}{2^{2}} ki te \frac{16}{16}.
\frac{-191x^{2}+16\times 15x^{2}}{64}=x^{2}
Tā te mea he rite te tauraro o \frac{-191x^{2}}{64} me \frac{16\times 15x^{2}}{64}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-191x^{2}+240x^{2}}{64}=x^{2}
Mahia ngā whakarea i roto o -191x^{2}+16\times 15x^{2}.
\frac{49x^{2}}{64}=x^{2}
Whakakotahitia ngā kupu rite i -191x^{2}+240x^{2}.
\frac{49x^{2}}{64}-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
49x^{2}-64x^{2}=0
Whakareatia ngā taha e rua o te whārite ki te 64.
-15x^{2}=0
Pahekotia te 49x^{2} me -64x^{2}, ka -15x^{2}.
x^{2}=0
Whakawehea ngā taha e rua ki te -15. Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
x=0 x=0
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x=0
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
\left(\frac{x}{2^{3}}\right)^{2}-x^{2}\times 3+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
Whakareatia te x ki te x, ka x^{2}.
\left(\frac{x}{8}\right)^{2}-x^{2}\times 3+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
\frac{x^{2}}{8^{2}}-x^{2}\times 3+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
Kia whakarewa i te \frac{x}{8} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{x^{2}}{8^{2}}-\frac{x^{2}\times 3\times 8^{2}}{8^{2}}+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x^{2}\times 3 ki te \frac{8^{2}}{8^{2}}.
\frac{x^{2}-x^{2}\times 3\times 8^{2}}{8^{2}}+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
Tā te mea he rite te tauraro o \frac{x^{2}}{8^{2}} me \frac{x^{2}\times 3\times 8^{2}}{8^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{x^{2}-192x^{2}}{8^{2}}+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
Mahia ngā whakarea i roto o x^{2}-x^{2}\times 3\times 8^{2}.
\frac{-191x^{2}}{8^{2}}+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
Whakakotahitia ngā kupu rite i x^{2}-192x^{2}.
\frac{-191x^{2}}{8^{2}}+15\times \frac{x^{2}}{2^{2}}=x^{2}
Kia whakarewa i te \frac{x}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{-191x^{2}}{8^{2}}+\frac{15x^{2}}{2^{2}}=x^{2}
Tuhia te 15\times \frac{x^{2}}{2^{2}} hei hautanga kotahi.
\frac{-191x^{2}}{64}+\frac{16\times 15x^{2}}{64}=x^{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 8^{2} me 2^{2} ko 64. Whakareatia \frac{15x^{2}}{2^{2}} ki te \frac{16}{16}.
\frac{-191x^{2}+16\times 15x^{2}}{64}=x^{2}
Tā te mea he rite te tauraro o \frac{-191x^{2}}{64} me \frac{16\times 15x^{2}}{64}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-191x^{2}+240x^{2}}{64}=x^{2}
Mahia ngā whakarea i roto o -191x^{2}+16\times 15x^{2}.
\frac{49x^{2}}{64}=x^{2}
Whakakotahitia ngā kupu rite i -191x^{2}+240x^{2}.
\frac{49x^{2}}{64}-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
49x^{2}-64x^{2}=0
Whakareatia ngā taha e rua o te whārite ki te 64.
-15x^{2}=0
Pahekotia te 49x^{2} me -64x^{2}, ka -15x^{2}.
x^{2}=0
Whakawehea ngā taha e rua ki te -15. Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
x=\frac{0±\sqrt{0^{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±0}{2}
Tuhia te pūtakerua o te 0^{2}.
x=0
Whakawehe 0 ki te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}