Aromātai
\frac{y^{5}}{x^{20}z^{40}}
Whakaroha
\frac{y^{5}}{x^{20}z^{40}}
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
( \frac { x ^ { 4 } y ^ { - 1 } } { z ^ { - 8 } } ) ^ { - 5 }
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{x^{4}\times \frac{1}{y}}{z^{-8}}\right)^{-5}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{\left(x^{4}\right)^{-5}\times \left(\frac{1}{y}\right)^{-5}}{\left(z^{-8}\right)^{-5}}
Hei hiki i te otinga o ngā tau e rua ki tētahi pū, hīkina ia tau ki te pū ka whakawehe.
\frac{x^{4\left(-5\right)}y^{-\left(-5\right)}}{z^{-8\left(-5\right)}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
\frac{x^{-20}y^{-\left(-5\right)}}{z^{-8\left(-5\right)}}
Whakareatia 4 ki te -5.
\frac{x^{-20}y^{5}}{z^{-8\left(-5\right)}}
Whakareatia -1 ki te -5.
\frac{x^{-20}y^{5}}{z^{40}}
Whakareatia -8 ki te -5.
\left(\frac{x^{4}\times \frac{1}{y}}{z^{-8}}\right)^{-5}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{\left(x^{4}\right)^{-5}\times \left(\frac{1}{y}\right)^{-5}}{\left(z^{-8}\right)^{-5}}
Hei hiki i te otinga o ngā tau e rua ki tētahi pū, hīkina ia tau ki te pū ka whakawehe.
\frac{x^{4\left(-5\right)}y^{-\left(-5\right)}}{z^{-8\left(-5\right)}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
\frac{x^{-20}y^{-\left(-5\right)}}{z^{-8\left(-5\right)}}
Whakareatia 4 ki te -5.
\frac{x^{-20}y^{5}}{z^{-8\left(-5\right)}}
Whakareatia -1 ki te -5.
\frac{x^{-20}y^{5}}{z^{40}}
Whakareatia -8 ki te -5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}