Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{\frac{1}{2}x^{3}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{1}{\frac{1}{2}}\times \frac{1}{x^{3}}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
2\times \frac{1}{x^{3}}
Hīkina te \frac{1}{2} ki te pū -1.
-\left(\frac{1}{2}x^{3}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{2}x^{3})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(\frac{1}{2}x^{3}\right)^{-2}\times 3\times \frac{1}{2}x^{3-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-\frac{3}{2}x^{2}\times \left(\frac{1}{2}x^{3}\right)^{-2}
Whakarūnātia.