Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x})+\frac{1}{x}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2})
Mo ētahi pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te hua o ngā pānga e rua ko te pānga tuatahi whakareatia ki te pārōnaki o te pānga tuarua tāpiri i te pānga tuarua whakareatia ki te pārōnaki o te mea tuatahi.
x^{2}\left(-1\right)x^{-1-1}+\frac{1}{x}\times 2x^{2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
x^{2}\left(-1\right)x^{-2}+\frac{1}{x}\times 2x^{1}
Whakarūnātia.
-x^{2-2}+2x^{-1+1}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
-x^{0}+2x^{0}
Whakarūnātia.
-1+2\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
-1+2
Mō tētahi kupu t, t\times 1=t me 1t=t.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{1}x^{2-1})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})
Mahia ngā tātaitanga.
x^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
x^{0}
Mahia ngā tātaitanga.
1
Mō tētahi kupu t mahue te 0, t^{0}=1.