Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\frac{x^{-2}y^{2}}{x^{2}}\right)^{-\frac{1}{2}}\times \left(\frac{x^{3}y}{y^{\frac{1}{2}}}\right)^{2}
Me whakakore tahi te y i te taurunga me te tauraro.
\left(\frac{y^{2}}{x^{4}}\right)^{-\frac{1}{2}}\times \left(\frac{x^{3}y}{y^{\frac{1}{2}}}\right)^{2}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}\times \left(\frac{x^{3}y}{y^{\frac{1}{2}}}\right)^{2}
Kia whakarewa i te \frac{y^{2}}{x^{4}} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}\left(\sqrt{y}x^{3}\right)^{2}
Me whakakore tahi te \sqrt{y} i te taurunga me te tauraro.
\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}\left(\sqrt{y}\right)^{2}\left(x^{3}\right)^{2}
Whakarohaina te \left(\sqrt{y}x^{3}\right)^{2}.
\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}\left(\sqrt{y}\right)^{2}x^{6}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 2 kia riro ai te 6.
\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}yx^{6}
Tātaihia te \sqrt{y} mā te pū o 2, kia riro ko y.
\frac{y^{-1}}{\left(x^{4}\right)^{-\frac{1}{2}}}yx^{6}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te -\frac{1}{2} kia riro ai te -1.
\frac{y^{-1}}{x^{-2}}yx^{6}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 4 me te -\frac{1}{2} kia riro ai te -2.
\frac{y^{-1}y}{x^{-2}}x^{6}
Tuhia te \frac{y^{-1}}{x^{-2}}y hei hautanga kotahi.
\frac{y^{-1}yx^{6}}{x^{-2}}
Tuhia te \frac{y^{-1}y}{x^{-2}}x^{6} hei hautanga kotahi.
\frac{1}{y}yx^{8}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
x^{8}
Me whakakore te y me te y.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(\frac{x^{-2}y^{2}}{x^{2}}\right)^{-\frac{1}{2}}\times \left(\frac{x^{3}y}{y^{\frac{1}{2}}}\right)^{2})
Me whakakore tahi te y i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(\frac{y^{2}}{x^{4}}\right)^{-\frac{1}{2}}\times \left(\frac{x^{3}y}{y^{\frac{1}{2}}}\right)^{2})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}\times \left(\frac{x^{3}y}{y^{\frac{1}{2}}}\right)^{2})
Kia whakarewa i te \frac{y^{2}}{x^{4}} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}\left(\sqrt{y}x^{3}\right)^{2})
Me whakakore tahi te \sqrt{y} i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}\left(\sqrt{y}\right)^{2}\left(x^{3}\right)^{2})
Whakarohaina te \left(\sqrt{y}x^{3}\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}\left(\sqrt{y}\right)^{2}x^{6})
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 2 kia riro ai te 6.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(y^{2}\right)^{-\frac{1}{2}}}{\left(x^{4}\right)^{-\frac{1}{2}}}yx^{6})
Tātaihia te \sqrt{y} mā te pū o 2, kia riro ko y.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{y^{-1}}{\left(x^{4}\right)^{-\frac{1}{2}}}yx^{6})
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te -\frac{1}{2} kia riro ai te -1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{y^{-1}}{x^{-2}}yx^{6})
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 4 me te -\frac{1}{2} kia riro ai te -2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{y^{-1}y}{x^{-2}}x^{6})
Tuhia te \frac{y^{-1}}{x^{-2}}y hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{y^{-1}yx^{6}}{x^{-2}})
Tuhia te \frac{y^{-1}y}{x^{-2}}x^{6} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{y}yx^{8})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{8})
Me whakakore te y me te y.
8x^{8-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
8x^{7}
Tango 1 mai i 8.