Aromātai
\frac{k^{2}}{12}
Kimi Pārōnaki e ai ki k
\frac{k}{6}
Tohaina
Kua tāruatia ki te papatopenga
\frac{kk}{3\times 4}
Me whakarea te \frac{k}{3} ki te \frac{k}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{k^{2}}{3\times 4}
Whakareatia te k ki te k, ka k^{2}.
\frac{k^{2}}{12}
Whakareatia te 3 ki te 4, ka 12.
\frac{1}{3}k^{1}\frac{\mathrm{d}}{\mathrm{d}k}(\frac{1}{4}k^{1})+\frac{1}{4}k^{1}\frac{\mathrm{d}}{\mathrm{d}k}(\frac{1}{3}k^{1})
Mo ētahi pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te hua o ngā pānga e rua ko te pānga tuatahi whakareatia ki te pārōnaki o te pānga tuarua tāpiri i te pānga tuarua whakareatia ki te pārōnaki o te mea tuatahi.
\frac{1}{3}k^{1}\times \frac{1}{4}k^{1-1}+\frac{1}{4}k^{1}\times \frac{1}{3}k^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{1}{3}k^{1}\times \frac{1}{4}k^{0}+\frac{1}{4}k^{1}\times \frac{1}{3}k^{0}
Whakarūnātia.
\frac{1}{4}\times \frac{1}{3}k^{1}+\frac{1}{4}\times \frac{1}{3}k^{1}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{1}{12}k^{1}+\frac{1}{12}k^{1}
Whakarūnātia.
\frac{1+1}{12}k^{1}
Pahekotia ngā kīanga tau ōrite.
\frac{1}{6}k^{1}
Tāpiri \frac{1}{12} ki te \frac{1}{12} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\frac{1}{6}k
Mō tētahi kupu t, t^{1}=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}