Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki k
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{kk}{3\times 4}
Me whakarea te \frac{k}{3} ki te \frac{k}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{k^{2}}{3\times 4}
Whakareatia te k ki te k, ka k^{2}.
\frac{k^{2}}{12}
Whakareatia te 3 ki te 4, ka 12.
\frac{1}{3}k^{1}\frac{\mathrm{d}}{\mathrm{d}k}(\frac{1}{4}k^{1})+\frac{1}{4}k^{1}\frac{\mathrm{d}}{\mathrm{d}k}(\frac{1}{3}k^{1})
Mo ētahi pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te hua o ngā pānga e rua ko te pānga tuatahi whakareatia ki te pārōnaki o te pānga tuarua tāpiri i te pānga tuarua whakareatia ki te pārōnaki o te mea tuatahi.
\frac{1}{3}k^{1}\times \frac{1}{4}k^{1-1}+\frac{1}{4}k^{1}\times \frac{1}{3}k^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{1}{3}k^{1}\times \frac{1}{4}k^{0}+\frac{1}{4}k^{1}\times \frac{1}{3}k^{0}
Whakarūnātia.
\frac{1}{4}\times \frac{1}{3}k^{1}+\frac{1}{4}\times \frac{1}{3}k^{1}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{1}{12}k^{1}+\frac{1}{12}k^{1}
Whakarūnātia.
\frac{1+1}{12}k^{1}
Pahekotia ngā kīanga tau ōrite.
\frac{1}{6}k^{1}
Tāpiri \frac{1}{12} ki te \frac{1}{12} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\frac{1}{6}k
Mō tētahi kupu t, t^{1}=t.