Aromātai
\frac{2-3a}{a\left(a+2\right)}
Whakaroha
\frac{2-3a}{a\left(a+2\right)}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{a-2}{\left(a-2\right)\left(a+2\right)}-\frac{a-1}{a^{2}-2a}}{\frac{1}{a-2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{a-2}{a^{2}-4}.
\frac{\frac{1}{a+2}-\frac{a-1}{a^{2}-2a}}{\frac{1}{a-2}}
Me whakakore tahi te a-2 i te taurunga me te tauraro.
\frac{\frac{1}{a+2}-\frac{a-1}{a\left(a-2\right)}}{\frac{1}{a-2}}
Tauwehea te a^{2}-2a.
\frac{\frac{a\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)}-\frac{\left(a-1\right)\left(a+2\right)}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a+2 me a\left(a-2\right) ko a\left(a-2\right)\left(a+2\right). Whakareatia \frac{1}{a+2} ki te \frac{a\left(a-2\right)}{a\left(a-2\right)}. Whakareatia \frac{a-1}{a\left(a-2\right)} ki te \frac{a+2}{a+2}.
\frac{\frac{a\left(a-2\right)-\left(a-1\right)\left(a+2\right)}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
Tā te mea he rite te tauraro o \frac{a\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)} me \frac{\left(a-1\right)\left(a+2\right)}{a\left(a-2\right)\left(a+2\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{a^{2}-2a-a^{2}-2a+a+2}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
Mahia ngā whakarea i roto o a\left(a-2\right)-\left(a-1\right)\left(a+2\right).
\frac{\frac{-3a+2}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
Whakakotahitia ngā kupu rite i a^{2}-2a-a^{2}-2a+a+2.
\frac{\left(-3a+2\right)\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)}
Whakawehe \frac{-3a+2}{a\left(a-2\right)\left(a+2\right)} ki te \frac{1}{a-2} mā te whakarea \frac{-3a+2}{a\left(a-2\right)\left(a+2\right)} ki te tau huripoki o \frac{1}{a-2}.
\frac{-3a+2}{a\left(a+2\right)}
Me whakakore tahi te a-2 i te taurunga me te tauraro.
\frac{-3a+2}{a^{2}+2a}
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te a+2.
\frac{\frac{a-2}{\left(a-2\right)\left(a+2\right)}-\frac{a-1}{a^{2}-2a}}{\frac{1}{a-2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{a-2}{a^{2}-4}.
\frac{\frac{1}{a+2}-\frac{a-1}{a^{2}-2a}}{\frac{1}{a-2}}
Me whakakore tahi te a-2 i te taurunga me te tauraro.
\frac{\frac{1}{a+2}-\frac{a-1}{a\left(a-2\right)}}{\frac{1}{a-2}}
Tauwehea te a^{2}-2a.
\frac{\frac{a\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)}-\frac{\left(a-1\right)\left(a+2\right)}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a+2 me a\left(a-2\right) ko a\left(a-2\right)\left(a+2\right). Whakareatia \frac{1}{a+2} ki te \frac{a\left(a-2\right)}{a\left(a-2\right)}. Whakareatia \frac{a-1}{a\left(a-2\right)} ki te \frac{a+2}{a+2}.
\frac{\frac{a\left(a-2\right)-\left(a-1\right)\left(a+2\right)}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
Tā te mea he rite te tauraro o \frac{a\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)} me \frac{\left(a-1\right)\left(a+2\right)}{a\left(a-2\right)\left(a+2\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{a^{2}-2a-a^{2}-2a+a+2}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
Mahia ngā whakarea i roto o a\left(a-2\right)-\left(a-1\right)\left(a+2\right).
\frac{\frac{-3a+2}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
Whakakotahitia ngā kupu rite i a^{2}-2a-a^{2}-2a+a+2.
\frac{\left(-3a+2\right)\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)}
Whakawehe \frac{-3a+2}{a\left(a-2\right)\left(a+2\right)} ki te \frac{1}{a-2} mā te whakarea \frac{-3a+2}{a\left(a-2\right)\left(a+2\right)} ki te tau huripoki o \frac{1}{a-2}.
\frac{-3a+2}{a\left(a+2\right)}
Me whakakore tahi te a-2 i te taurunga me te tauraro.
\frac{-3a+2}{a^{2}+2a}
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te a+2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}