Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{a-2}{\left(a-2\right)\left(a+2\right)}-\frac{a-1}{a^{2}-2a}}{\frac{1}{a-2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{a-2}{a^{2}-4}.
\frac{\frac{1}{a+2}-\frac{a-1}{a^{2}-2a}}{\frac{1}{a-2}}
Me whakakore tahi te a-2 i te taurunga me te tauraro.
\frac{\frac{1}{a+2}-\frac{a-1}{a\left(a-2\right)}}{\frac{1}{a-2}}
Tauwehea te a^{2}-2a.
\frac{\frac{a\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)}-\frac{\left(a-1\right)\left(a+2\right)}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a+2 me a\left(a-2\right) ko a\left(a-2\right)\left(a+2\right). Whakareatia \frac{1}{a+2} ki te \frac{a\left(a-2\right)}{a\left(a-2\right)}. Whakareatia \frac{a-1}{a\left(a-2\right)} ki te \frac{a+2}{a+2}.
\frac{\frac{a\left(a-2\right)-\left(a-1\right)\left(a+2\right)}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
Tā te mea he rite te tauraro o \frac{a\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)} me \frac{\left(a-1\right)\left(a+2\right)}{a\left(a-2\right)\left(a+2\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{a^{2}-2a-a^{2}-2a+a+2}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
Mahia ngā whakarea i roto o a\left(a-2\right)-\left(a-1\right)\left(a+2\right).
\frac{\frac{-3a+2}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
Whakakotahitia ngā kupu rite i a^{2}-2a-a^{2}-2a+a+2.
\frac{\left(-3a+2\right)\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)}
Whakawehe \frac{-3a+2}{a\left(a-2\right)\left(a+2\right)} ki te \frac{1}{a-2} mā te whakarea \frac{-3a+2}{a\left(a-2\right)\left(a+2\right)} ki te tau huripoki o \frac{1}{a-2}.
\frac{-3a+2}{a\left(a+2\right)}
Me whakakore tahi te a-2 i te taurunga me te tauraro.
\frac{-3a+2}{a^{2}+2a}
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te a+2.
\frac{\frac{a-2}{\left(a-2\right)\left(a+2\right)}-\frac{a-1}{a^{2}-2a}}{\frac{1}{a-2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{a-2}{a^{2}-4}.
\frac{\frac{1}{a+2}-\frac{a-1}{a^{2}-2a}}{\frac{1}{a-2}}
Me whakakore tahi te a-2 i te taurunga me te tauraro.
\frac{\frac{1}{a+2}-\frac{a-1}{a\left(a-2\right)}}{\frac{1}{a-2}}
Tauwehea te a^{2}-2a.
\frac{\frac{a\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)}-\frac{\left(a-1\right)\left(a+2\right)}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a+2 me a\left(a-2\right) ko a\left(a-2\right)\left(a+2\right). Whakareatia \frac{1}{a+2} ki te \frac{a\left(a-2\right)}{a\left(a-2\right)}. Whakareatia \frac{a-1}{a\left(a-2\right)} ki te \frac{a+2}{a+2}.
\frac{\frac{a\left(a-2\right)-\left(a-1\right)\left(a+2\right)}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
Tā te mea he rite te tauraro o \frac{a\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)} me \frac{\left(a-1\right)\left(a+2\right)}{a\left(a-2\right)\left(a+2\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{a^{2}-2a-a^{2}-2a+a+2}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
Mahia ngā whakarea i roto o a\left(a-2\right)-\left(a-1\right)\left(a+2\right).
\frac{\frac{-3a+2}{a\left(a-2\right)\left(a+2\right)}}{\frac{1}{a-2}}
Whakakotahitia ngā kupu rite i a^{2}-2a-a^{2}-2a+a+2.
\frac{\left(-3a+2\right)\left(a-2\right)}{a\left(a-2\right)\left(a+2\right)}
Whakawehe \frac{-3a+2}{a\left(a-2\right)\left(a+2\right)} ki te \frac{1}{a-2} mā te whakarea \frac{-3a+2}{a\left(a-2\right)\left(a+2\right)} ki te tau huripoki o \frac{1}{a-2}.
\frac{-3a+2}{a\left(a+2\right)}
Me whakakore tahi te a-2 i te taurunga me te tauraro.
\frac{-3a+2}{a^{2}+2a}
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te a+2.