Aromātai
-\frac{a\left(a-B\right)}{B+a}
Whakaroha
-\frac{a^{2}-Ba}{B+a}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{a^{2}}{a+B}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Tauwehea te a^{2}+2aB+B^{2}.
\frac{\frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a+B me \left(B+a\right)^{2} ko \left(B+a\right)^{2}. Whakareatia \frac{a^{2}}{a+B} ki te \frac{B+a}{B+a}.
\frac{\frac{a^{2}\left(B+a\right)-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Tā te mea he rite te tauraro o \frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}} me \frac{a^{3}}{\left(B+a\right)^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{a^{2}B+a^{3}-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Mahia ngā whakarea i roto o a^{2}\left(B+a\right)-a^{3}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Whakakotahitia ngā kupu rite i a^{2}B+a^{3}-a^{3}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Tauwehea te a^{2}-B^{2}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a+B me \left(B+a\right)\left(-B+a\right) ko \left(B+a\right)\left(-B+a\right). Whakareatia \frac{a}{a+B} ki te \frac{-B+a}{-B+a}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Tā te mea he rite te tauraro o \frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)} me \frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB+a^{2}-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Mahia ngā whakarea i roto o a\left(-B+a\right)-a^{2}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB}{\left(B+a\right)\left(-B+a\right)}}
Whakakotahitia ngā kupu rite i -aB+a^{2}-a^{2}.
\frac{a^{2}B\left(B+a\right)\left(-B+a\right)}{\left(B+a\right)^{2}\left(-1\right)aB}
Whakawehe \frac{a^{2}B}{\left(B+a\right)^{2}} ki te \frac{-aB}{\left(B+a\right)\left(-B+a\right)} mā te whakarea \frac{a^{2}B}{\left(B+a\right)^{2}} ki te tau huripoki o \frac{-aB}{\left(B+a\right)\left(-B+a\right)}.
\frac{a\left(-B+a\right)}{-\left(B+a\right)}
Me whakakore tahi te Ba\left(B+a\right) i te taurunga me te tauraro.
\frac{-aB+a^{2}}{-\left(B+a\right)}
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te -B+a.
\frac{-aB+a^{2}}{-B-a}
Hei kimi i te tauaro o B+a, kimihia te tauaro o ia taurangi.
\frac{\frac{a^{2}}{a+B}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Tauwehea te a^{2}+2aB+B^{2}.
\frac{\frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a+B me \left(B+a\right)^{2} ko \left(B+a\right)^{2}. Whakareatia \frac{a^{2}}{a+B} ki te \frac{B+a}{B+a}.
\frac{\frac{a^{2}\left(B+a\right)-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Tā te mea he rite te tauraro o \frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}} me \frac{a^{3}}{\left(B+a\right)^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{a^{2}B+a^{3}-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Mahia ngā whakarea i roto o a^{2}\left(B+a\right)-a^{3}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Whakakotahitia ngā kupu rite i a^{2}B+a^{3}-a^{3}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Tauwehea te a^{2}-B^{2}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a+B me \left(B+a\right)\left(-B+a\right) ko \left(B+a\right)\left(-B+a\right). Whakareatia \frac{a}{a+B} ki te \frac{-B+a}{-B+a}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Tā te mea he rite te tauraro o \frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)} me \frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB+a^{2}-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Mahia ngā whakarea i roto o a\left(-B+a\right)-a^{2}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB}{\left(B+a\right)\left(-B+a\right)}}
Whakakotahitia ngā kupu rite i -aB+a^{2}-a^{2}.
\frac{a^{2}B\left(B+a\right)\left(-B+a\right)}{\left(B+a\right)^{2}\left(-1\right)aB}
Whakawehe \frac{a^{2}B}{\left(B+a\right)^{2}} ki te \frac{-aB}{\left(B+a\right)\left(-B+a\right)} mā te whakarea \frac{a^{2}B}{\left(B+a\right)^{2}} ki te tau huripoki o \frac{-aB}{\left(B+a\right)\left(-B+a\right)}.
\frac{a\left(-B+a\right)}{-\left(B+a\right)}
Me whakakore tahi te Ba\left(B+a\right) i te taurunga me te tauraro.
\frac{-aB+a^{2}}{-\left(B+a\right)}
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te -B+a.
\frac{-aB+a^{2}}{-B-a}
Hei kimi i te tauaro o B+a, kimihia te tauaro o ia taurangi.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}