Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{a^{2}}{a+B}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Tauwehea te a^{2}+2aB+B^{2}.
\frac{\frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a+B me \left(B+a\right)^{2} ko \left(B+a\right)^{2}. Whakareatia \frac{a^{2}}{a+B} ki te \frac{B+a}{B+a}.
\frac{\frac{a^{2}\left(B+a\right)-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Tā te mea he rite te tauraro o \frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}} me \frac{a^{3}}{\left(B+a\right)^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{a^{2}B+a^{3}-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Mahia ngā whakarea i roto o a^{2}\left(B+a\right)-a^{3}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Whakakotahitia ngā kupu rite i a^{2}B+a^{3}-a^{3}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Tauwehea te a^{2}-B^{2}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a+B me \left(B+a\right)\left(-B+a\right) ko \left(B+a\right)\left(-B+a\right). Whakareatia \frac{a}{a+B} ki te \frac{-B+a}{-B+a}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Tā te mea he rite te tauraro o \frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)} me \frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB+a^{2}-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Mahia ngā whakarea i roto o a\left(-B+a\right)-a^{2}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB}{\left(B+a\right)\left(-B+a\right)}}
Whakakotahitia ngā kupu rite i -aB+a^{2}-a^{2}.
\frac{a^{2}B\left(B+a\right)\left(-B+a\right)}{\left(B+a\right)^{2}\left(-1\right)aB}
Whakawehe \frac{a^{2}B}{\left(B+a\right)^{2}} ki te \frac{-aB}{\left(B+a\right)\left(-B+a\right)} mā te whakarea \frac{a^{2}B}{\left(B+a\right)^{2}} ki te tau huripoki o \frac{-aB}{\left(B+a\right)\left(-B+a\right)}.
\frac{a\left(-B+a\right)}{-\left(B+a\right)}
Me whakakore tahi te Ba\left(B+a\right) i te taurunga me te tauraro.
\frac{-aB+a^{2}}{-\left(B+a\right)}
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te -B+a.
\frac{-aB+a^{2}}{-B-a}
Hei kimi i te tauaro o B+a, kimihia te tauaro o ia taurangi.
\frac{\frac{a^{2}}{a+B}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Tauwehea te a^{2}+2aB+B^{2}.
\frac{\frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a+B me \left(B+a\right)^{2} ko \left(B+a\right)^{2}. Whakareatia \frac{a^{2}}{a+B} ki te \frac{B+a}{B+a}.
\frac{\frac{a^{2}\left(B+a\right)-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Tā te mea he rite te tauraro o \frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}} me \frac{a^{3}}{\left(B+a\right)^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{a^{2}B+a^{3}-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Mahia ngā whakarea i roto o a^{2}\left(B+a\right)-a^{3}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Whakakotahitia ngā kupu rite i a^{2}B+a^{3}-a^{3}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Tauwehea te a^{2}-B^{2}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a+B me \left(B+a\right)\left(-B+a\right) ko \left(B+a\right)\left(-B+a\right). Whakareatia \frac{a}{a+B} ki te \frac{-B+a}{-B+a}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Tā te mea he rite te tauraro o \frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)} me \frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB+a^{2}-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Mahia ngā whakarea i roto o a\left(-B+a\right)-a^{2}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB}{\left(B+a\right)\left(-B+a\right)}}
Whakakotahitia ngā kupu rite i -aB+a^{2}-a^{2}.
\frac{a^{2}B\left(B+a\right)\left(-B+a\right)}{\left(B+a\right)^{2}\left(-1\right)aB}
Whakawehe \frac{a^{2}B}{\left(B+a\right)^{2}} ki te \frac{-aB}{\left(B+a\right)\left(-B+a\right)} mā te whakarea \frac{a^{2}B}{\left(B+a\right)^{2}} ki te tau huripoki o \frac{-aB}{\left(B+a\right)\left(-B+a\right)}.
\frac{a\left(-B+a\right)}{-\left(B+a\right)}
Me whakakore tahi te Ba\left(B+a\right) i te taurunga me te tauraro.
\frac{-aB+a^{2}}{-\left(B+a\right)}
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te -B+a.
\frac{-aB+a^{2}}{-B-a}
Hei kimi i te tauaro o B+a, kimihia te tauaro o ia taurangi.