Aromātai
\frac{6b}{a^{2}}
Whakaroha
\frac{6b}{a^{2}}
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{a+3b}{a\left(a-3b\right)}-\frac{a-3b}{a\left(a+3b\right)}\right)\times \frac{a^{2}-9b^{2}}{2a^{2}}
Tauwehea te a^{2}-3ab. Tauwehea te a^{2}+3ab.
\left(\frac{\left(a+3b\right)\left(a+3b\right)}{a\left(a-3b\right)\left(a+3b\right)}-\frac{\left(a-3b\right)\left(a-3b\right)}{a\left(a-3b\right)\left(a+3b\right)}\right)\times \frac{a^{2}-9b^{2}}{2a^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a\left(a-3b\right) me a\left(a+3b\right) ko a\left(a-3b\right)\left(a+3b\right). Whakareatia \frac{a+3b}{a\left(a-3b\right)} ki te \frac{a+3b}{a+3b}. Whakareatia \frac{a-3b}{a\left(a+3b\right)} ki te \frac{a-3b}{a-3b}.
\frac{\left(a+3b\right)\left(a+3b\right)-\left(a-3b\right)\left(a-3b\right)}{a\left(a-3b\right)\left(a+3b\right)}\times \frac{a^{2}-9b^{2}}{2a^{2}}
Tā te mea he rite te tauraro o \frac{\left(a+3b\right)\left(a+3b\right)}{a\left(a-3b\right)\left(a+3b\right)} me \frac{\left(a-3b\right)\left(a-3b\right)}{a\left(a-3b\right)\left(a+3b\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{a^{2}+3ab+3ab+9b^{2}-a^{2}+3ab+3ab-9b^{2}}{a\left(a-3b\right)\left(a+3b\right)}\times \frac{a^{2}-9b^{2}}{2a^{2}}
Mahia ngā whakarea i roto o \left(a+3b\right)\left(a+3b\right)-\left(a-3b\right)\left(a-3b\right).
\frac{12ab}{a\left(a-3b\right)\left(a+3b\right)}\times \frac{a^{2}-9b^{2}}{2a^{2}}
Whakakotahitia ngā kupu rite i a^{2}+3ab+3ab+9b^{2}-a^{2}+3ab+3ab-9b^{2}.
\frac{12b}{\left(a-3b\right)\left(a+3b\right)}\times \frac{a^{2}-9b^{2}}{2a^{2}}
Me whakakore tahi te a i te taurunga me te tauraro.
\frac{12b\left(a^{2}-9b^{2}\right)}{\left(a-3b\right)\left(a+3b\right)\times 2a^{2}}
Me whakarea te \frac{12b}{\left(a-3b\right)\left(a+3b\right)} ki te \frac{a^{2}-9b^{2}}{2a^{2}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{6b\left(a^{2}-9b^{2}\right)}{\left(a-3b\right)\left(a+3b\right)a^{2}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{6b\left(a-3b\right)\left(a+3b\right)}{\left(a-3b\right)\left(a+3b\right)a^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{6b}{a^{2}}
Me whakakore tahi te \left(a-3b\right)\left(a+3b\right) i te taurunga me te tauraro.
\left(\frac{a+3b}{a\left(a-3b\right)}-\frac{a-3b}{a\left(a+3b\right)}\right)\times \frac{a^{2}-9b^{2}}{2a^{2}}
Tauwehea te a^{2}-3ab. Tauwehea te a^{2}+3ab.
\left(\frac{\left(a+3b\right)\left(a+3b\right)}{a\left(a-3b\right)\left(a+3b\right)}-\frac{\left(a-3b\right)\left(a-3b\right)}{a\left(a-3b\right)\left(a+3b\right)}\right)\times \frac{a^{2}-9b^{2}}{2a^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a\left(a-3b\right) me a\left(a+3b\right) ko a\left(a-3b\right)\left(a+3b\right). Whakareatia \frac{a+3b}{a\left(a-3b\right)} ki te \frac{a+3b}{a+3b}. Whakareatia \frac{a-3b}{a\left(a+3b\right)} ki te \frac{a-3b}{a-3b}.
\frac{\left(a+3b\right)\left(a+3b\right)-\left(a-3b\right)\left(a-3b\right)}{a\left(a-3b\right)\left(a+3b\right)}\times \frac{a^{2}-9b^{2}}{2a^{2}}
Tā te mea he rite te tauraro o \frac{\left(a+3b\right)\left(a+3b\right)}{a\left(a-3b\right)\left(a+3b\right)} me \frac{\left(a-3b\right)\left(a-3b\right)}{a\left(a-3b\right)\left(a+3b\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{a^{2}+3ab+3ab+9b^{2}-a^{2}+3ab+3ab-9b^{2}}{a\left(a-3b\right)\left(a+3b\right)}\times \frac{a^{2}-9b^{2}}{2a^{2}}
Mahia ngā whakarea i roto o \left(a+3b\right)\left(a+3b\right)-\left(a-3b\right)\left(a-3b\right).
\frac{12ab}{a\left(a-3b\right)\left(a+3b\right)}\times \frac{a^{2}-9b^{2}}{2a^{2}}
Whakakotahitia ngā kupu rite i a^{2}+3ab+3ab+9b^{2}-a^{2}+3ab+3ab-9b^{2}.
\frac{12b}{\left(a-3b\right)\left(a+3b\right)}\times \frac{a^{2}-9b^{2}}{2a^{2}}
Me whakakore tahi te a i te taurunga me te tauraro.
\frac{12b\left(a^{2}-9b^{2}\right)}{\left(a-3b\right)\left(a+3b\right)\times 2a^{2}}
Me whakarea te \frac{12b}{\left(a-3b\right)\left(a+3b\right)} ki te \frac{a^{2}-9b^{2}}{2a^{2}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{6b\left(a^{2}-9b^{2}\right)}{\left(a-3b\right)\left(a+3b\right)a^{2}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{6b\left(a-3b\right)\left(a+3b\right)}{\left(a-3b\right)\left(a+3b\right)a^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{6b}{a^{2}}
Me whakakore tahi te \left(a-3b\right)\left(a+3b\right) i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}