Aromātai
\frac{1}{a+2}
Whakaroha
\frac{1}{a+2}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{a+2}{a\left(a-2\right)}+\frac{8}{\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Tauwehea te a^{2}-2a. Tauwehea te 4-a^{2}.
\frac{\frac{\left(a+2\right)\left(-a-2\right)}{a\left(a-2\right)\left(-a-2\right)}+\frac{8a}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a\left(a-2\right) me \left(a-2\right)\left(-a-2\right) ko a\left(a-2\right)\left(-a-2\right). Whakareatia \frac{a+2}{a\left(a-2\right)} ki te \frac{-a-2}{-a-2}. Whakareatia \frac{8}{\left(a-2\right)\left(-a-2\right)} ki te \frac{a}{a}.
\frac{\frac{\left(a+2\right)\left(-a-2\right)+8a}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Tā te mea he rite te tauraro o \frac{\left(a+2\right)\left(-a-2\right)}{a\left(a-2\right)\left(-a-2\right)} me \frac{8a}{a\left(a-2\right)\left(-a-2\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{-a^{2}-2a-2a-4+8a}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Mahia ngā whakarea i roto o \left(a+2\right)\left(-a-2\right)+8a.
\frac{\frac{-a^{2}+4a-4}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Whakakotahitia ngā kupu rite i -a^{2}-2a-2a-4+8a.
\frac{\frac{\left(a-2\right)\left(-a+2\right)}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{-a^{2}+4a-4}{a\left(a-2\right)\left(-a-2\right)}.
\frac{\frac{-\left(a-2\right)\left(a-2\right)}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Unuhia te tohu tōraro i roto o 2-a.
\frac{\frac{-\left(a-2\right)}{a\left(-a-2\right)}}{\frac{a-2}{a}}
Me whakakore tahi te a-2 i te taurunga me te tauraro.
\frac{-\left(a-2\right)a}{a\left(-a-2\right)\left(a-2\right)}
Whakawehe \frac{-\left(a-2\right)}{a\left(-a-2\right)} ki te \frac{a-2}{a} mā te whakarea \frac{-\left(a-2\right)}{a\left(-a-2\right)} ki te tau huripoki o \frac{a-2}{a}.
\frac{-1}{-a-2}
Me whakakore tahi te a\left(a-2\right) i te taurunga me te tauraro.
\frac{\frac{a+2}{a\left(a-2\right)}+\frac{8}{\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Tauwehea te a^{2}-2a. Tauwehea te 4-a^{2}.
\frac{\frac{\left(a+2\right)\left(-a-2\right)}{a\left(a-2\right)\left(-a-2\right)}+\frac{8a}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a\left(a-2\right) me \left(a-2\right)\left(-a-2\right) ko a\left(a-2\right)\left(-a-2\right). Whakareatia \frac{a+2}{a\left(a-2\right)} ki te \frac{-a-2}{-a-2}. Whakareatia \frac{8}{\left(a-2\right)\left(-a-2\right)} ki te \frac{a}{a}.
\frac{\frac{\left(a+2\right)\left(-a-2\right)+8a}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Tā te mea he rite te tauraro o \frac{\left(a+2\right)\left(-a-2\right)}{a\left(a-2\right)\left(-a-2\right)} me \frac{8a}{a\left(a-2\right)\left(-a-2\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{-a^{2}-2a-2a-4+8a}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Mahia ngā whakarea i roto o \left(a+2\right)\left(-a-2\right)+8a.
\frac{\frac{-a^{2}+4a-4}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Whakakotahitia ngā kupu rite i -a^{2}-2a-2a-4+8a.
\frac{\frac{\left(a-2\right)\left(-a+2\right)}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{-a^{2}+4a-4}{a\left(a-2\right)\left(-a-2\right)}.
\frac{\frac{-\left(a-2\right)\left(a-2\right)}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Unuhia te tohu tōraro i roto o 2-a.
\frac{\frac{-\left(a-2\right)}{a\left(-a-2\right)}}{\frac{a-2}{a}}
Me whakakore tahi te a-2 i te taurunga me te tauraro.
\frac{-\left(a-2\right)a}{a\left(-a-2\right)\left(a-2\right)}
Whakawehe \frac{-\left(a-2\right)}{a\left(-a-2\right)} ki te \frac{a-2}{a} mā te whakarea \frac{-\left(a-2\right)}{a\left(-a-2\right)} ki te tau huripoki o \frac{a-2}{a}.
\frac{-1}{-a-2}
Me whakakore tahi te a\left(a-2\right) i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}