Manatoko
pono
Tohaina
Kua tāruatia ki te papatopenga
\frac{9}{8}\times 10-\frac{8}{10}+\frac{3}{12}=\frac{107}{10}
Whakawehea te 20 ki te 2, kia riro ko 10.
\frac{9\times 10}{8}-\frac{8}{10}+\frac{3}{12}=\frac{107}{10}
Tuhia te \frac{9}{8}\times 10 hei hautanga kotahi.
\frac{90}{8}-\frac{8}{10}+\frac{3}{12}=\frac{107}{10}
Whakareatia te 9 ki te 10, ka 90.
\frac{45}{4}-\frac{8}{10}+\frac{3}{12}=\frac{107}{10}
Whakahekea te hautanga \frac{90}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{45}{4}-\frac{4}{5}+\frac{3}{12}=\frac{107}{10}
Whakahekea te hautanga \frac{8}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{225}{20}-\frac{16}{20}+\frac{3}{12}=\frac{107}{10}
Ko te maha noa iti rawa atu o 4 me 5 ko 20. Me tahuri \frac{45}{4} me \frac{4}{5} ki te hautau me te tautūnga 20.
\frac{225-16}{20}+\frac{3}{12}=\frac{107}{10}
Tā te mea he rite te tauraro o \frac{225}{20} me \frac{16}{20}, me tango rāua mā te tango i ō raua taurunga.
\frac{209}{20}+\frac{3}{12}=\frac{107}{10}
Tangohia te 16 i te 225, ka 209.
\frac{209}{20}+\frac{1}{4}=\frac{107}{10}
Whakahekea te hautanga \frac{3}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{209}{20}+\frac{5}{20}=\frac{107}{10}
Ko te maha noa iti rawa atu o 20 me 4 ko 20. Me tahuri \frac{209}{20} me \frac{1}{4} ki te hautau me te tautūnga 20.
\frac{209+5}{20}=\frac{107}{10}
Tā te mea he rite te tauraro o \frac{209}{20} me \frac{5}{20}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{214}{20}=\frac{107}{10}
Tāpirihia te 209 ki te 5, ka 214.
\frac{107}{10}=\frac{107}{10}
Whakahekea te hautanga \frac{214}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\text{true}
Whakatauritea te \frac{107}{10} me te \frac{107}{10}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}