Aromātai
3
Tauwehe
3
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{592704+66^{3}}{150}-84\times 66}{12^{2}-6^{2}}
Tātaihia te 84 mā te pū o 3, kia riro ko 592704.
\frac{\frac{592704+287496}{150}-84\times 66}{12^{2}-6^{2}}
Tātaihia te 66 mā te pū o 3, kia riro ko 287496.
\frac{\frac{880200}{150}-84\times 66}{12^{2}-6^{2}}
Tāpirihia te 592704 ki te 287496, ka 880200.
\frac{5868-84\times 66}{12^{2}-6^{2}}
Whakawehea te 880200 ki te 150, kia riro ko 5868.
\frac{5868-5544}{12^{2}-6^{2}}
Whakareatia te 84 ki te 66, ka 5544.
\frac{324}{12^{2}-6^{2}}
Tangohia te 5544 i te 5868, ka 324.
\frac{324}{144-6^{2}}
Tātaihia te 12 mā te pū o 2, kia riro ko 144.
\frac{324}{144-36}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
\frac{324}{108}
Tangohia te 36 i te 144, ka 108.
3
Whakawehea te 324 ki te 108, kia riro ko 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}