Whakaoti mō x
x = \frac{29}{15} = 1\frac{14}{15} \approx 1.933333333
x = -\frac{29}{15} = -1\frac{14}{15} \approx -1.933333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{8}{5}+\frac{1}{3}=\frac{15}{29}xx
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
\frac{24}{15}+\frac{5}{15}=\frac{15}{29}xx
Ko te maha noa iti rawa atu o 5 me 3 ko 15. Me tahuri \frac{8}{5} me \frac{1}{3} ki te hautau me te tautūnga 15.
\frac{24+5}{15}=\frac{15}{29}xx
Tā te mea he rite te tauraro o \frac{24}{15} me \frac{5}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{29}{15}=\frac{15}{29}xx
Tāpirihia te 24 ki te 5, ka 29.
\frac{29}{15}=\frac{15}{29}x^{2}
Whakareatia te x ki te x, ka x^{2}.
\frac{15}{29}x^{2}=\frac{29}{15}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}=\frac{29}{15}\times \frac{29}{15}
Me whakarea ngā taha e rua ki te \frac{29}{15}, te tau utu o \frac{15}{29}.
x^{2}=\frac{29\times 29}{15\times 15}
Me whakarea te \frac{29}{15} ki te \frac{29}{15} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x^{2}=\frac{841}{225}
Mahia ngā whakarea i roto i te hautanga \frac{29\times 29}{15\times 15}.
x=\frac{29}{15} x=-\frac{29}{15}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\frac{8}{5}+\frac{1}{3}=\frac{15}{29}xx
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
\frac{24}{15}+\frac{5}{15}=\frac{15}{29}xx
Ko te maha noa iti rawa atu o 5 me 3 ko 15. Me tahuri \frac{8}{5} me \frac{1}{3} ki te hautau me te tautūnga 15.
\frac{24+5}{15}=\frac{15}{29}xx
Tā te mea he rite te tauraro o \frac{24}{15} me \frac{5}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{29}{15}=\frac{15}{29}xx
Tāpirihia te 24 ki te 5, ka 29.
\frac{29}{15}=\frac{15}{29}x^{2}
Whakareatia te x ki te x, ka x^{2}.
\frac{15}{29}x^{2}=\frac{29}{15}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{15}{29}x^{2}-\frac{29}{15}=0
Tangohia te \frac{29}{15} mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times \frac{15}{29}\left(-\frac{29}{15}\right)}}{2\times \frac{15}{29}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{15}{29} mō a, 0 mō b, me -\frac{29}{15} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{15}{29}\left(-\frac{29}{15}\right)}}{2\times \frac{15}{29}}
Pūrua 0.
x=\frac{0±\sqrt{-\frac{60}{29}\left(-\frac{29}{15}\right)}}{2\times \frac{15}{29}}
Whakareatia -4 ki te \frac{15}{29}.
x=\frac{0±\sqrt{4}}{2\times \frac{15}{29}}
Whakareatia -\frac{60}{29} ki te -\frac{29}{15} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{0±2}{2\times \frac{15}{29}}
Tuhia te pūtakerua o te 4.
x=\frac{0±2}{\frac{30}{29}}
Whakareatia 2 ki te \frac{15}{29}.
x=\frac{29}{15}
Nā, me whakaoti te whārite x=\frac{0±2}{\frac{30}{29}} ina he tāpiri te ±. Whakawehe 2 ki te \frac{30}{29} mā te whakarea 2 ki te tau huripoki o \frac{30}{29}.
x=-\frac{29}{15}
Nā, me whakaoti te whārite x=\frac{0±2}{\frac{30}{29}} ina he tango te ±. Whakawehe -2 ki te \frac{30}{29} mā te whakarea -2 ki te tau huripoki o \frac{30}{29}.
x=\frac{29}{15} x=-\frac{29}{15}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}