Aromātai
\frac{23x^{3}}{6}-\frac{7x^{2}}{34}-9x+\frac{4}{17}
Tauwehe
\frac{391x^{3}-21x^{2}-918x+24}{102}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{8}{3}x^{3}-\frac{5}{17}x^{2}-9x-\frac{1}{17}+\frac{7}{6}x^{3}+\frac{3}{34}x^{2}+\frac{5}{17}
Whakahekea te hautanga \frac{2}{34} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{23}{6}x^{3}-\frac{5}{17}x^{2}-9x-\frac{1}{17}+\frac{3}{34}x^{2}+\frac{5}{17}
Pahekotia te \frac{8}{3}x^{3} me \frac{7}{6}x^{3}, ka \frac{23}{6}x^{3}.
\frac{23}{6}x^{3}-\frac{7}{34}x^{2}-9x-\frac{1}{17}+\frac{5}{17}
Pahekotia te -\frac{5}{17}x^{2} me \frac{3}{34}x^{2}, ka -\frac{7}{34}x^{2}.
\frac{23}{6}x^{3}-\frac{7}{34}x^{2}-9x+\frac{4}{17}
Tāpirihia te -\frac{1}{17} ki te \frac{5}{17}, ka \frac{4}{17}.
\frac{391x^{3}-21x^{2}-918x+24}{102}
Tauwehea te \frac{1}{102}. Kāore te pūrau 391x^{3}-21x^{2}-918x+24 i whakatauwehea i te mea kāhore ōna pūtake whakahau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}