Aromātai
-6.375
Tauwehe
-6.375
Tohaina
Kua tāruatia ki te papatopenga
\left(8-0.75\times \frac{1}{6}\right)\times \frac{1}{3}-9
Me whakakore te 3 me te 3.
\left(8-\frac{3}{4}\times \frac{1}{6}\right)\times \frac{1}{3}-9
Me tahuri ki tau ā-ira 0.75 ki te hautau \frac{75}{100}. Whakahekea te hautanga \frac{75}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\left(8-\frac{3\times 1}{4\times 6}\right)\times \frac{1}{3}-9
Me whakarea te \frac{3}{4} ki te \frac{1}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\left(8-\frac{3}{24}\right)\times \frac{1}{3}-9
Mahia ngā whakarea i roto i te hautanga \frac{3\times 1}{4\times 6}.
\left(8-\frac{1}{8}\right)\times \frac{1}{3}-9
Whakahekea te hautanga \frac{3}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\left(\frac{64}{8}-\frac{1}{8}\right)\times \frac{1}{3}-9
Me tahuri te 8 ki te hautau \frac{64}{8}.
\frac{64-1}{8}\times \frac{1}{3}-9
Tā te mea he rite te tauraro o \frac{64}{8} me \frac{1}{8}, me tango rāua mā te tango i ō raua taurunga.
\frac{63}{8}\times \frac{1}{3}-9
Tangohia te 1 i te 64, ka 63.
\frac{63\times 1}{8\times 3}-9
Me whakarea te \frac{63}{8} ki te \frac{1}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{63}{24}-9
Mahia ngā whakarea i roto i te hautanga \frac{63\times 1}{8\times 3}.
\frac{21}{8}-9
Whakahekea te hautanga \frac{63}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{21}{8}-\frac{72}{8}
Me tahuri te 9 ki te hautau \frac{72}{8}.
\frac{21-72}{8}
Tā te mea he rite te tauraro o \frac{21}{8} me \frac{72}{8}, me tango rāua mā te tango i ō raua taurunga.
-\frac{51}{8}
Tangohia te 72 i te 21, ka -51.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}