Aromātai
\frac{1}{3}\approx 0.333333333
Tauwehe
\frac{1}{3} = 0.3333333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{343}{512}}{\left(\frac{8}{7}\right)^{-3}}-\left(\frac{1}{3}-1\right)^{0}+3^{-1}
Tātaihia te \frac{7}{8} mā te pū o 3, kia riro ko \frac{343}{512}.
\frac{\frac{343}{512}}{\frac{343}{512}}-\left(\frac{1}{3}-1\right)^{0}+3^{-1}
Tātaihia te \frac{8}{7} mā te pū o -3, kia riro ko \frac{343}{512}.
1-\left(\frac{1}{3}-1\right)^{0}+3^{-1}
Whakawehea te \frac{343}{512} ki te \frac{343}{512}, kia riro ko 1.
1-\left(-\frac{2}{3}\right)^{0}+3^{-1}
Tangohia te 1 i te \frac{1}{3}, ka -\frac{2}{3}.
1-1+3^{-1}
Tātaihia te -\frac{2}{3} mā te pū o 0, kia riro ko 1.
0+3^{-1}
Tangohia te 1 i te 1, ka 0.
0+\frac{1}{3}
Tātaihia te 3 mā te pū o -1, kia riro ko \frac{1}{3}.
\frac{1}{3}
Tāpirihia te 0 ki te \frac{1}{3}, ka \frac{1}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}