Aromātai
\frac{143}{24}\approx 5.958333333
Tauwehe
\frac{11 \cdot 13}{2 ^ {3} \cdot 3} = 5\frac{23}{24} = 5.958333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{7}{8}+0-\frac{1}{3}}{\frac{1}{11}}
Whakareatia te 0 ki te 25, ka 0.
\frac{\frac{7}{8}-\frac{1}{3}}{\frac{1}{11}}
Tāpirihia te \frac{7}{8} ki te 0, ka \frac{7}{8}.
\frac{\frac{21}{24}-\frac{8}{24}}{\frac{1}{11}}
Ko te maha noa iti rawa atu o 8 me 3 ko 24. Me tahuri \frac{7}{8} me \frac{1}{3} ki te hautau me te tautūnga 24.
\frac{\frac{21-8}{24}}{\frac{1}{11}}
Tā te mea he rite te tauraro o \frac{21}{24} me \frac{8}{24}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{13}{24}}{\frac{1}{11}}
Tangohia te 8 i te 21, ka 13.
\frac{13}{24}\times 11
Whakawehe \frac{13}{24} ki te \frac{1}{11} mā te whakarea \frac{13}{24} ki te tau huripoki o \frac{1}{11}.
\frac{13\times 11}{24}
Tuhia te \frac{13}{24}\times 11 hei hautanga kotahi.
\frac{143}{24}
Whakareatia te 13 ki te 11, ka 143.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}