Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki f
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3g^{-8}f}{16g^{-5}h^{2}}
Me whakakore tahi te 2fh^{2} i te taurunga me te tauraro.
\frac{3f}{16h^{2}g^{3}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{\mathrm{d}}{\mathrm{d}f}(\frac{6h^{2}}{g^{8}\times \frac{32h^{4}}{g^{5}}}f^{2-1})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}f}(\frac{3}{16h^{2}g^{3}}f^{1})
Mahia ngā tātaitanga.
\frac{3}{16h^{2}g^{3}}f^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{3}{16h^{2}g^{3}}f^{0}
Mahia ngā tātaitanga.
\frac{3}{16h^{2}g^{3}}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{3}{16h^{2}g^{3}}
Mō tētahi kupu t, t\times 1=t me 1t=t.