Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{6}{5}yzx^{2}}{\frac{5}{3}}
Me whakakore tahi te x^{3}y^{3}z^{7} i te taurunga me te tauraro.
\frac{\frac{6}{5}yzx^{2}\times 3}{5}
Whakawehe \frac{6}{5}yzx^{2} ki te \frac{5}{3} mā te whakarea \frac{6}{5}yzx^{2} ki te tau huripoki o \frac{5}{3}.
\frac{\frac{18}{5}yzx^{2}}{5}
Whakareatia te \frac{6}{5} ki te 3, ka \frac{18}{5}.
\frac{18}{25}yzx^{2}
Whakawehea te \frac{18}{5}yzx^{2} ki te 5, kia riro ko \frac{18}{25}yzx^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6y^{4}z^{8}}{5\times \frac{5y^{3}z^{7}}{3}}x^{5-3})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{18yz}{25}x^{2})
Mahia ngā tātaitanga.
2\times \frac{18yz}{25}x^{2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{36yz}{25}x^{1}
Mahia ngā tātaitanga.
\frac{36yz}{25}x
Mō tētahi kupu t, t^{1}=t.