Aromātai
\frac{18yzx^{2}}{25}
Kimi Pārōnaki e ai ki x
\frac{36xyz}{25}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{6}{5}yzx^{2}}{\frac{5}{3}}
Me whakakore tahi te x^{3}y^{3}z^{7} i te taurunga me te tauraro.
\frac{\frac{6}{5}yzx^{2}\times 3}{5}
Whakawehe \frac{6}{5}yzx^{2} ki te \frac{5}{3} mā te whakarea \frac{6}{5}yzx^{2} ki te tau huripoki o \frac{5}{3}.
\frac{\frac{18}{5}yzx^{2}}{5}
Whakareatia te \frac{6}{5} ki te 3, ka \frac{18}{5}.
\frac{18}{25}yzx^{2}
Whakawehea te \frac{18}{5}yzx^{2} ki te 5, kia riro ko \frac{18}{25}yzx^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6y^{4}z^{8}}{5\times \frac{5y^{3}z^{7}}{3}}x^{5-3})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{18yz}{25}x^{2})
Mahia ngā tātaitanga.
2\times \frac{18yz}{25}x^{2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{36yz}{25}x^{1}
Mahia ngā tātaitanga.
\frac{36yz}{25}x
Mō tētahi kupu t, t^{1}=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}