Aromātai
1
Tauwehe
1
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
( \frac { 5 } { 3 } - 1 ) \cdot ( \frac { 7 } { 2 } - 2 ) =
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{5}{3}-\frac{3}{3}\right)\left(\frac{7}{2}-2\right)
Me tahuri te 1 ki te hautau \frac{3}{3}.
\frac{5-3}{3}\left(\frac{7}{2}-2\right)
Tā te mea he rite te tauraro o \frac{5}{3} me \frac{3}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{2}{3}\left(\frac{7}{2}-2\right)
Tangohia te 3 i te 5, ka 2.
\frac{2}{3}\left(\frac{7}{2}-\frac{4}{2}\right)
Me tahuri te 2 ki te hautau \frac{4}{2}.
\frac{2}{3}\times \frac{7-4}{2}
Tā te mea he rite te tauraro o \frac{7}{2} me \frac{4}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{2}{3}\times \frac{3}{2}
Tangohia te 4 i te 7, ka 3.
1
Me whakakore atu te \frac{2}{3} me tōna tau utu \frac{3}{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}