Aromātai
-\frac{r^{2}}{9}+\frac{25}{4}
Whakaroha
-\frac{r^{2}}{9}+\frac{25}{4}
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{5\times 3}{6}-\frac{2r}{6}\right)\left(\frac{5}{2}+\frac{r}{3}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 3 ko 6. Whakareatia \frac{5}{2} ki te \frac{3}{3}. Whakareatia \frac{r}{3} ki te \frac{2}{2}.
\frac{5\times 3-2r}{6}\left(\frac{5}{2}+\frac{r}{3}\right)
Tā te mea he rite te tauraro o \frac{5\times 3}{6} me \frac{2r}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{15-2r}{6}\left(\frac{5}{2}+\frac{r}{3}\right)
Mahia ngā whakarea i roto o 5\times 3-2r.
\frac{15-2r}{6}\left(\frac{5\times 3}{6}+\frac{2r}{6}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 3 ko 6. Whakareatia \frac{5}{2} ki te \frac{3}{3}. Whakareatia \frac{r}{3} ki te \frac{2}{2}.
\frac{15-2r}{6}\times \frac{5\times 3+2r}{6}
Tā te mea he rite te tauraro o \frac{5\times 3}{6} me \frac{2r}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{15-2r}{6}\times \frac{15+2r}{6}
Mahia ngā whakarea i roto o 5\times 3+2r.
\frac{\left(15-2r\right)\left(15+2r\right)}{6\times 6}
Me whakarea te \frac{15-2r}{6} ki te \frac{15+2r}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(15-2r\right)\left(15+2r\right)}{36}
Whakareatia te 6 ki te 6, ka 36.
\frac{15^{2}-\left(2r\right)^{2}}{36}
Whakaarohia te \left(15-2r\right)\left(15+2r\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{225-\left(2r\right)^{2}}{36}
Tātaihia te 15 mā te pū o 2, kia riro ko 225.
\frac{225-2^{2}r^{2}}{36}
Whakarohaina te \left(2r\right)^{2}.
\frac{225-4r^{2}}{36}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\left(\frac{5\times 3}{6}-\frac{2r}{6}\right)\left(\frac{5}{2}+\frac{r}{3}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 3 ko 6. Whakareatia \frac{5}{2} ki te \frac{3}{3}. Whakareatia \frac{r}{3} ki te \frac{2}{2}.
\frac{5\times 3-2r}{6}\left(\frac{5}{2}+\frac{r}{3}\right)
Tā te mea he rite te tauraro o \frac{5\times 3}{6} me \frac{2r}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{15-2r}{6}\left(\frac{5}{2}+\frac{r}{3}\right)
Mahia ngā whakarea i roto o 5\times 3-2r.
\frac{15-2r}{6}\left(\frac{5\times 3}{6}+\frac{2r}{6}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 3 ko 6. Whakareatia \frac{5}{2} ki te \frac{3}{3}. Whakareatia \frac{r}{3} ki te \frac{2}{2}.
\frac{15-2r}{6}\times \frac{5\times 3+2r}{6}
Tā te mea he rite te tauraro o \frac{5\times 3}{6} me \frac{2r}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{15-2r}{6}\times \frac{15+2r}{6}
Mahia ngā whakarea i roto o 5\times 3+2r.
\frac{\left(15-2r\right)\left(15+2r\right)}{6\times 6}
Me whakarea te \frac{15-2r}{6} ki te \frac{15+2r}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(15-2r\right)\left(15+2r\right)}{36}
Whakareatia te 6 ki te 6, ka 36.
\frac{15^{2}-\left(2r\right)^{2}}{36}
Whakaarohia te \left(15-2r\right)\left(15+2r\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{225-\left(2r\right)^{2}}{36}
Tātaihia te 15 mā te pū o 2, kia riro ko 225.
\frac{225-2^{2}r^{2}}{36}
Whakarohaina te \left(2r\right)^{2}.
\frac{225-4r^{2}}{36}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}