Aromātai
-\frac{9}{55}\approx -0.163636364
Tauwehe
-\frac{9}{55} = -0.16363636363636364
Tohaina
Kua tāruatia ki te papatopenga
\frac{44\left(-75\right)}{81\times 64}\times \frac{16}{35}\left(-\frac{126}{121}\right)\left(-\frac{27}{50}\right)
Me whakarea te \frac{44}{81} ki te -\frac{75}{64} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-3300}{5184}\times \frac{16}{35}\left(-\frac{126}{121}\right)\left(-\frac{27}{50}\right)
Mahia ngā whakarea i roto i te hautanga \frac{44\left(-75\right)}{81\times 64}.
-\frac{275}{432}\times \frac{16}{35}\left(-\frac{126}{121}\right)\left(-\frac{27}{50}\right)
Whakahekea te hautanga \frac{-3300}{5184} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
\frac{-275\times 16}{432\times 35}\left(-\frac{126}{121}\right)\left(-\frac{27}{50}\right)
Me whakarea te -\frac{275}{432} ki te \frac{16}{35} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-4400}{15120}\left(-\frac{126}{121}\right)\left(-\frac{27}{50}\right)
Mahia ngā whakarea i roto i te hautanga \frac{-275\times 16}{432\times 35}.
-\frac{55}{189}\left(-\frac{126}{121}\right)\left(-\frac{27}{50}\right)
Whakahekea te hautanga \frac{-4400}{15120} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 80.
\frac{-55\left(-126\right)}{189\times 121}\left(-\frac{27}{50}\right)
Me whakarea te -\frac{55}{189} ki te -\frac{126}{121} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{6930}{22869}\left(-\frac{27}{50}\right)
Mahia ngā whakarea i roto i te hautanga \frac{-55\left(-126\right)}{189\times 121}.
\frac{10}{33}\left(-\frac{27}{50}\right)
Whakahekea te hautanga \frac{6930}{22869} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 693.
\frac{10\left(-27\right)}{33\times 50}
Me whakarea te \frac{10}{33} ki te -\frac{27}{50} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-270}{1650}
Mahia ngā whakarea i roto i te hautanga \frac{10\left(-27\right)}{33\times 50}.
-\frac{9}{55}
Whakahekea te hautanga \frac{-270}{1650} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 30.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}