Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{\left(4p\right)^{-2}}{q^{-2}}}{\left(\frac{1}{2}q\right)^{3}}
Kia whakarewa i te \frac{4p}{q} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\frac{\left(4p\right)^{-2}}{q^{-2}}}{\left(\frac{1}{2}\right)^{3}q^{3}}
Whakarohaina te \left(\frac{1}{2}q\right)^{3}.
\frac{\frac{\left(4p\right)^{-2}}{q^{-2}}}{\frac{1}{8}q^{3}}
Tātaihia te \frac{1}{2} mā te pū o 3, kia riro ko \frac{1}{8}.
\frac{\left(4p\right)^{-2}}{q^{-2}\times \frac{1}{8}q^{3}}
Tuhia te \frac{\frac{\left(4p\right)^{-2}}{q^{-2}}}{\frac{1}{8}q^{3}} hei hautanga kotahi.
\frac{4^{-2}p^{-2}}{q^{-2}\times \frac{1}{8}q^{3}}
Whakarohaina te \left(4p\right)^{-2}.
\frac{\frac{1}{16}p^{-2}}{q^{-2}\times \frac{1}{8}q^{3}}
Tātaihia te 4 mā te pū o -2, kia riro ko \frac{1}{16}.
\frac{\frac{1}{16}p^{-2}}{q^{1}\times \frac{1}{8}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -2 me te 3 kia riro ai te 1.
\frac{\frac{1}{16}p^{-2}}{q\times \frac{1}{8}}
Tātaihia te q mā te pū o 1, kia riro ko q.
\frac{\frac{\left(4p\right)^{-2}}{q^{-2}}}{\left(\frac{1}{2}q\right)^{3}}
Kia whakarewa i te \frac{4p}{q} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\frac{\left(4p\right)^{-2}}{q^{-2}}}{\left(\frac{1}{2}\right)^{3}q^{3}}
Whakarohaina te \left(\frac{1}{2}q\right)^{3}.
\frac{\frac{\left(4p\right)^{-2}}{q^{-2}}}{\frac{1}{8}q^{3}}
Tātaihia te \frac{1}{2} mā te pū o 3, kia riro ko \frac{1}{8}.
\frac{\left(4p\right)^{-2}}{q^{-2}\times \frac{1}{8}q^{3}}
Tuhia te \frac{\frac{\left(4p\right)^{-2}}{q^{-2}}}{\frac{1}{8}q^{3}} hei hautanga kotahi.
\frac{4^{-2}p^{-2}}{q^{-2}\times \frac{1}{8}q^{3}}
Whakarohaina te \left(4p\right)^{-2}.
\frac{\frac{1}{16}p^{-2}}{q^{-2}\times \frac{1}{8}q^{3}}
Tātaihia te 4 mā te pū o -2, kia riro ko \frac{1}{16}.
\frac{\frac{1}{16}p^{-2}}{q^{1}\times \frac{1}{8}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -2 me te 3 kia riro ai te 1.
\frac{\frac{1}{16}p^{-2}}{q\times \frac{1}{8}}
Tātaihia te q mā te pū o 1, kia riro ko q.