Aromātai
\frac{2923}{1200}\approx 2.435833333
Tauwehe
\frac{37 \cdot 79}{2 ^ {4} \cdot 3 \cdot 5 ^ {2}} = 2\frac{523}{1200} = 2.4358333333333335
Tohaina
Kua tāruatia ki te papatopenga
\frac{81}{16}+\sqrt[3]{-27}+\left(\frac{1}{5}\right)^{2}+\sqrt[3]{-\frac{8}{27}}+\left(\frac{3}{5}\right)^{0}
Tātaihia te \frac{4}{9} mā te pū o -2, kia riro ko \frac{81}{16}.
\frac{81}{16}-3+\left(\frac{1}{5}\right)^{2}+\sqrt[3]{-\frac{8}{27}}+\left(\frac{3}{5}\right)^{0}
Tātaitia te \sqrt[3]{-27} kia tae ki -3.
\frac{33}{16}+\left(\frac{1}{5}\right)^{2}+\sqrt[3]{-\frac{8}{27}}+\left(\frac{3}{5}\right)^{0}
Tangohia te 3 i te \frac{81}{16}, ka \frac{33}{16}.
\frac{33}{16}+\frac{1}{25}+\sqrt[3]{-\frac{8}{27}}+\left(\frac{3}{5}\right)^{0}
Tātaihia te \frac{1}{5} mā te pū o 2, kia riro ko \frac{1}{25}.
\frac{841}{400}+\sqrt[3]{-\frac{8}{27}}+\left(\frac{3}{5}\right)^{0}
Tāpirihia te \frac{33}{16} ki te \frac{1}{25}, ka \frac{841}{400}.
\frac{841}{400}-\frac{2}{3}+\left(\frac{3}{5}\right)^{0}
Tātaitia te \sqrt[3]{-\frac{8}{27}} kia tae ki -\frac{2}{3}.
\frac{1723}{1200}+\left(\frac{3}{5}\right)^{0}
Tangohia te \frac{2}{3} i te \frac{841}{400}, ka \frac{1723}{1200}.
\frac{1723}{1200}+1
Tātaihia te \frac{3}{5} mā te pū o 0, kia riro ko 1.
\frac{2923}{1200}
Tāpirihia te \frac{1723}{1200} ki te 1, ka \frac{2923}{1200}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}