Aromātai
\frac{x}{x-2}
Whakaroha
\frac{x}{x-2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{4\left(-1\right)}{x-5}+\frac{9}{x-5}}{\frac{2}{x}+\frac{3}{x-5}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 5-x me x-5 ko x-5. Whakareatia \frac{4}{5-x} ki te \frac{-1}{-1}.
\frac{\frac{4\left(-1\right)+9}{x-5}}{\frac{2}{x}+\frac{3}{x-5}}
Tā te mea he rite te tauraro o \frac{4\left(-1\right)}{x-5} me \frac{9}{x-5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{-4+9}{x-5}}{\frac{2}{x}+\frac{3}{x-5}}
Mahia ngā whakarea i roto o 4\left(-1\right)+9.
\frac{\frac{5}{x-5}}{\frac{2}{x}+\frac{3}{x-5}}
Mahia ngā tātaitai i roto o -4+9.
\frac{\frac{5}{x-5}}{\frac{2\left(x-5\right)}{x\left(x-5\right)}+\frac{3x}{x\left(x-5\right)}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x me x-5 ko x\left(x-5\right). Whakareatia \frac{2}{x} ki te \frac{x-5}{x-5}. Whakareatia \frac{3}{x-5} ki te \frac{x}{x}.
\frac{\frac{5}{x-5}}{\frac{2\left(x-5\right)+3x}{x\left(x-5\right)}}
Tā te mea he rite te tauraro o \frac{2\left(x-5\right)}{x\left(x-5\right)} me \frac{3x}{x\left(x-5\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{5}{x-5}}{\frac{2x-10+3x}{x\left(x-5\right)}}
Mahia ngā whakarea i roto o 2\left(x-5\right)+3x.
\frac{\frac{5}{x-5}}{\frac{5x-10}{x\left(x-5\right)}}
Whakakotahitia ngā kupu rite i 2x-10+3x.
\frac{5x\left(x-5\right)}{\left(x-5\right)\left(5x-10\right)}
Whakawehe \frac{5}{x-5} ki te \frac{5x-10}{x\left(x-5\right)} mā te whakarea \frac{5}{x-5} ki te tau huripoki o \frac{5x-10}{x\left(x-5\right)}.
\frac{5x}{5x-10}
Me whakakore tahi te x-5 i te taurunga me te tauraro.
\frac{5x}{5\left(x-2\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{x}{x-2}
Me whakakore tahi te 5 i te taurunga me te tauraro.
\frac{\frac{4\left(-1\right)}{x-5}+\frac{9}{x-5}}{\frac{2}{x}+\frac{3}{x-5}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 5-x me x-5 ko x-5. Whakareatia \frac{4}{5-x} ki te \frac{-1}{-1}.
\frac{\frac{4\left(-1\right)+9}{x-5}}{\frac{2}{x}+\frac{3}{x-5}}
Tā te mea he rite te tauraro o \frac{4\left(-1\right)}{x-5} me \frac{9}{x-5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{-4+9}{x-5}}{\frac{2}{x}+\frac{3}{x-5}}
Mahia ngā whakarea i roto o 4\left(-1\right)+9.
\frac{\frac{5}{x-5}}{\frac{2}{x}+\frac{3}{x-5}}
Mahia ngā tātaitai i roto o -4+9.
\frac{\frac{5}{x-5}}{\frac{2\left(x-5\right)}{x\left(x-5\right)}+\frac{3x}{x\left(x-5\right)}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x me x-5 ko x\left(x-5\right). Whakareatia \frac{2}{x} ki te \frac{x-5}{x-5}. Whakareatia \frac{3}{x-5} ki te \frac{x}{x}.
\frac{\frac{5}{x-5}}{\frac{2\left(x-5\right)+3x}{x\left(x-5\right)}}
Tā te mea he rite te tauraro o \frac{2\left(x-5\right)}{x\left(x-5\right)} me \frac{3x}{x\left(x-5\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{5}{x-5}}{\frac{2x-10+3x}{x\left(x-5\right)}}
Mahia ngā whakarea i roto o 2\left(x-5\right)+3x.
\frac{\frac{5}{x-5}}{\frac{5x-10}{x\left(x-5\right)}}
Whakakotahitia ngā kupu rite i 2x-10+3x.
\frac{5x\left(x-5\right)}{\left(x-5\right)\left(5x-10\right)}
Whakawehe \frac{5}{x-5} ki te \frac{5x-10}{x\left(x-5\right)} mā te whakarea \frac{5}{x-5} ki te tau huripoki o \frac{5x-10}{x\left(x-5\right)}.
\frac{5x}{5x-10}
Me whakakore tahi te x-5 i te taurunga me te tauraro.
\frac{5x}{5\left(x-2\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{x}{x-2}
Me whakakore tahi te 5 i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}