Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
\frac{12}{15}-\frac{10}{15}-10=1
Ko te maha noa iti rawa atu o 5 me 3 ko 15. Me tahuri \frac{4}{5} me \frac{2}{3} ki te hautau me te tautūnga 15.
\frac{12-10}{15}-10=1
Tā te mea he rite te tauraro o \frac{12}{15} me \frac{10}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{2}{15}-10=1
Tangohia te 10 i te 12, ka 2.
\frac{2}{15}-\frac{150}{15}=1
Me tahuri te 10 ki te hautau \frac{150}{15}.
\frac{2-150}{15}=1
Tā te mea he rite te tauraro o \frac{2}{15} me \frac{150}{15}, me tango rāua mā te tango i ō raua taurunga.
-\frac{148}{15}=1
Tangohia te 150 i te 2, ka -148.
-\frac{148}{15}=\frac{15}{15}
Me tahuri te 1 ki te hautau \frac{15}{15}.
\text{false}
Whakatauritea te -\frac{148}{15} me te \frac{15}{15}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}