Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{4}{5}\left(\frac{4}{24}-\frac{9}{24}\right)}{\frac{5}{12}\left(\frac{1}{10}+\frac{7}{4}\right)}
Ko te maha noa iti rawa atu o 6 me 8 ko 24. Me tahuri \frac{1}{6} me \frac{3}{8} ki te hautau me te tautūnga 24.
\frac{\frac{4}{5}\times \frac{4-9}{24}}{\frac{5}{12}\left(\frac{1}{10}+\frac{7}{4}\right)}
Tā te mea he rite te tauraro o \frac{4}{24} me \frac{9}{24}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{4}{5}\left(-\frac{5}{24}\right)}{\frac{5}{12}\left(\frac{1}{10}+\frac{7}{4}\right)}
Tangohia te 9 i te 4, ka -5.
\frac{\frac{4\left(-5\right)}{5\times 24}}{\frac{5}{12}\left(\frac{1}{10}+\frac{7}{4}\right)}
Me whakarea te \frac{4}{5} ki te -\frac{5}{24} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{-20}{120}}{\frac{5}{12}\left(\frac{1}{10}+\frac{7}{4}\right)}
Mahia ngā whakarea i roto i te hautanga \frac{4\left(-5\right)}{5\times 24}.
\frac{-\frac{1}{6}}{\frac{5}{12}\left(\frac{1}{10}+\frac{7}{4}\right)}
Whakahekea te hautanga \frac{-20}{120} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
\frac{-\frac{1}{6}}{\frac{5}{12}\left(\frac{2}{20}+\frac{35}{20}\right)}
Ko te maha noa iti rawa atu o 10 me 4 ko 20. Me tahuri \frac{1}{10} me \frac{7}{4} ki te hautau me te tautūnga 20.
\frac{-\frac{1}{6}}{\frac{5}{12}\times \frac{2+35}{20}}
Tā te mea he rite te tauraro o \frac{2}{20} me \frac{35}{20}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-\frac{1}{6}}{\frac{5}{12}\times \frac{37}{20}}
Tāpirihia te 2 ki te 35, ka 37.
\frac{-\frac{1}{6}}{\frac{5\times 37}{12\times 20}}
Me whakarea te \frac{5}{12} ki te \frac{37}{20} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-\frac{1}{6}}{\frac{185}{240}}
Mahia ngā whakarea i roto i te hautanga \frac{5\times 37}{12\times 20}.
\frac{-\frac{1}{6}}{\frac{37}{48}}
Whakahekea te hautanga \frac{185}{240} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
-\frac{1}{6}\times \frac{48}{37}
Whakawehe -\frac{1}{6} ki te \frac{37}{48} mā te whakarea -\frac{1}{6} ki te tau huripoki o \frac{37}{48}.
\frac{-48}{6\times 37}
Me whakarea te -\frac{1}{6} ki te \frac{48}{37} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-48}{222}
Mahia ngā whakarea i roto i te hautanga \frac{-48}{6\times 37}.
-\frac{8}{37}
Whakahekea te hautanga \frac{-48}{222} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.