Aromātai
-\frac{8}{37}\approx -0.216216216
Tauwehe
-\frac{8}{37} = -0.21621621621621623
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{4}{5}\left(\frac{4}{24}-\frac{9}{24}\right)}{\frac{5}{12}\left(\frac{1}{10}+\frac{7}{4}\right)}
Ko te maha noa iti rawa atu o 6 me 8 ko 24. Me tahuri \frac{1}{6} me \frac{3}{8} ki te hautau me te tautūnga 24.
\frac{\frac{4}{5}\times \frac{4-9}{24}}{\frac{5}{12}\left(\frac{1}{10}+\frac{7}{4}\right)}
Tā te mea he rite te tauraro o \frac{4}{24} me \frac{9}{24}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{4}{5}\left(-\frac{5}{24}\right)}{\frac{5}{12}\left(\frac{1}{10}+\frac{7}{4}\right)}
Tangohia te 9 i te 4, ka -5.
\frac{\frac{4\left(-5\right)}{5\times 24}}{\frac{5}{12}\left(\frac{1}{10}+\frac{7}{4}\right)}
Me whakarea te \frac{4}{5} ki te -\frac{5}{24} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{-20}{120}}{\frac{5}{12}\left(\frac{1}{10}+\frac{7}{4}\right)}
Mahia ngā whakarea i roto i te hautanga \frac{4\left(-5\right)}{5\times 24}.
\frac{-\frac{1}{6}}{\frac{5}{12}\left(\frac{1}{10}+\frac{7}{4}\right)}
Whakahekea te hautanga \frac{-20}{120} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
\frac{-\frac{1}{6}}{\frac{5}{12}\left(\frac{2}{20}+\frac{35}{20}\right)}
Ko te maha noa iti rawa atu o 10 me 4 ko 20. Me tahuri \frac{1}{10} me \frac{7}{4} ki te hautau me te tautūnga 20.
\frac{-\frac{1}{6}}{\frac{5}{12}\times \frac{2+35}{20}}
Tā te mea he rite te tauraro o \frac{2}{20} me \frac{35}{20}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-\frac{1}{6}}{\frac{5}{12}\times \frac{37}{20}}
Tāpirihia te 2 ki te 35, ka 37.
\frac{-\frac{1}{6}}{\frac{5\times 37}{12\times 20}}
Me whakarea te \frac{5}{12} ki te \frac{37}{20} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-\frac{1}{6}}{\frac{185}{240}}
Mahia ngā whakarea i roto i te hautanga \frac{5\times 37}{12\times 20}.
\frac{-\frac{1}{6}}{\frac{37}{48}}
Whakahekea te hautanga \frac{185}{240} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
-\frac{1}{6}\times \frac{48}{37}
Whakawehe -\frac{1}{6} ki te \frac{37}{48} mā te whakarea -\frac{1}{6} ki te tau huripoki o \frac{37}{48}.
\frac{-48}{6\times 37}
Me whakarea te -\frac{1}{6} ki te \frac{48}{37} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-48}{222}
Mahia ngā whakarea i roto i te hautanga \frac{-48}{6\times 37}.
-\frac{8}{37}
Whakahekea te hautanga \frac{-48}{222} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}